Välkommen till Resurscentrums frågelåda!

 

Vill du ha ett snabbt svar - sök i databasen: Anpassad Google-sökning
(tips för sökningen).
Använd diskussionsforum om du vill diskutera något.
Senaste frågorna. Veckans fråga.

21 frågor/svar hittade

Värme [20095]

Fråga:
Hej, så där i mitten på sjuttiotalet lämnade jag LTH och V-sektionen. En bra utbildning må jag säga, inte minst i fysik.

Men nu har jag kört fast i tanken. Allmänna Gaslagen räcker inte till. Eller rättare skrivet - jag räcker inte till.

I vår villa har vi som många andra en luftvärmepump. (Ett som jag förstår omvänt kylskåp.)

Jag tänker så här att under i övrigt lika villkor rymmer fuktig luft mer energi än torr luft. Och då skulle det kunna vara så att om man komprimerar den fuktiga luften så får man ut mer energi än när man komprimerar en torr luft. Min fråga är enkel. Stämmer detta, eller finns det något annat sätt att resonera.

Det verkar vara så att fuktig luft ger mindre energi än torr luft?! Glad Hälsning SiN
/sten inge n, LTH, Lund

Svar:
Hej f.d. LTHaren Sten Inge!

Gaslagen gäller ju bara för en ideal gas. Å andra sidan så uppför sig även fuktig luft som en ideal gas så länge vattenångan inte kondenserar.

En ideal gas är en modellering där man antar att gasen består av ourskiljbara partiklar och där den enda växelverkan partiklar emellan, eller med den behållare de eventuellt är instängda i, är via elastiska kollisioner, se fråga 16511 .

Relativ luftfuktighet är ett mått på andelen vattenånga som finns i luften. Andelen vattenånga anges (i %) i förhållande till den maximalt möjliga mängden vattenånga vid aktuell temperatur, den så kallade mättnadsånghalten, se Mättnadsånghalt och nedanstående figur.

Jag kan inte hitta några uppgifter om att luftfuktigheten skulle påverka effektiviteten (COP) hos en värmepump. Luft kan innehålla en hel del vattenånga utan att den kondenseras. Vid kondenseringen frigörs värme, men man vill naturligtvis inte ha någon kondensering inomhus. Så länge värmepumpen är i uppvärmningsläge blir ju dessutom luften varmare, så relativa luftfuktigheten minskar.

När det gäller ute-delen av värmepumpen så kan vatten kondenseras och frysas på förångaren. Detta frigör visserligen lite värme men en mer varaktig effekt är nog att vattnet/isen försämrar värmeutbytet med omgivningen. (Se fråga 18257 för beskrivning av hur värmepumpen fungerar. Själva värmepumpen är ju ett slutet system med en lämplig gas/vätska, så luftfuktigheten bör inte påverka COP.)

Slutresultatet blir alltså att luftfuktigheten normalt inte påverkar effektiviteten utom när det är kallt ute då fukten kan kondensera och frysa på förångaren. Men en luft-luft värmepump är ändå ganska ineffektiv när det är riktigt kallt ute.



/Peter E

Nyckelord: gaslagen, allmänna [21]; värmepump/kylskåp [6];

*

Ljud-Ljus-Vågor [19881]

Fråga:
Hej. Om man tar ett gram vatten, värmer upp till 300 grader, hur stor volym gasmängd blir det? Tack!
/Ben S, Göteborg

Svar:
Man måste även veta trycket. Vi antar normalt lufttryck . Använd gaslagen

pV = nRT

dvs

V = nRT/p

där

n = 1/18 mol

R = 8.314 J/(mol*K)

T = 300+273 = 573 K

p = 1.013*105 Pa

V är i m3
/Peter E

Nyckelord: gaslagen, allmänna [21];

*

Kraft-Rörelse [19760]

Fråga:
Hej, varför utvidgas ex en påse med luft på hög höjd?
/Stina P

Svar:
Väggen hos påsen strävar efter jämvikt, dvs trycket inne i påsen vill vara lika med trycket utanför. För den i påsen innestängda luften kan vi tillämpa den allmänna gaslagen (se fråga 16511 ):

pV = nRT

Om temperaturen är konstant (systemet har tid att anpassa temperaturen efter omgivningen) får vi att

pV = konstant

En minskning at trycket p medför alltså en ökning av volymen V, dvs påsen utvidgas.
/Peter E

Nyckelord: gaslagen, allmänna [21];

*

Kraft-Rörelse [19055]

Fråga:
Man skall välja storlek på ballongerna (se bild nedan) och vikterna så att det är möjligt att vikten och ballongen både kan flyta på ytan och stå på botten.

Vikterna är av järn och väger 1 kg. Vi kan bortse från ballongens/luftens vikt.
/Anton B, Solna gymnasium, Solna

Svar:
För att lösa uppgiften behöver vi tillämpa

Arkimedes princip, se fråga 13509 ,

Pascals lag, se fråga 14772 och

Allmänna gaslagen, se fråga 16511 .

Låt oss kalla ballongens volym för V10 dm3 (på 10 m djup) och V0 dm3 (vid vattenytan). Viktens volym kallar vi V.

Vi kan räkna ut V från järnets densitet 7.87 g/cm3

V = 1000/7.87 = 127 cm3 = 0.127 dm3

Övertrycket på 10 m djup ges av Pascals lag

p = rgh = 1000*10*10 = 105 Pa

Trycket vid botten är då

p10 = p0 + p = 2*105 Pa

eftersom lufttrycket vid ytan p0 = 105 Pa.

Från gaslagen pV = konst (temperaturen antas konstant) får vi

p0*V0 = p10*V10

105*V0 = 2*105*V10

dvs

V0 = 2V10

Trycket på 10 m djup är alltså två gånger så högt som vid ytan. Volymen vid ytan blir då dubbla volymen vid botten.

Den nedåtriktade kraften (tyngdkraften) är m*g. Lyftkraften enligt Arkimedes princip är

-volymen*(vätskans densitet)*g

där minustecknet indikerar att lyftkrften verkar uppåt. Nettokraften vid botten blir

mg - (V+V10)*r*g > 0   (netto positiv)

Om vi förkortar bort g, sätter m = 1 kg och vattnets densitet till 1 kg/dm3 får vi

1 - (V+V10) > 0   [1]

På samma sätt får vi nettokraften vid ytan

1 - (V+V0) < 0   (netto negativ)

eller

1 - V-2V10 < 0   [2]

Olikhet (1) ger

1 - 0.127 = 0.873 > V10   [3]

Olikhet (2) ger

1 - 0.127 = 0.873 < 2V10

eller

0.437 < V10   [4]

Vi kan kombinera [3] och [4] till

0.437 < V10 < 0.873

eller

0.874 < V0 < 1.746

Alla volymer är i dm3.



/Peter E

Nyckelord: Arkimedes princip [25]; Pascals lag [5]; gaslagen, allmänna [21];

*

Värme [19001]

Fråga:
Specifik värmekapacitet
/Veckans fråga

Ursprunglig fråga:
Försöker förstå sambandet mellan ett ämnes specifika värmekapacitet och dess densitet. Järn och trä har ungefär samma värmekapacitivtet men järn har mycket högre densitet och ledningsförmåga. Hur hänger det ihop? Jag funderar ochså över porslin jämfört med trä. Porslin har densitet 2,3kg/dm3 och värmekapacitivitet 0,8 kJ/kg.K. Har försökt hitta förklaringsmodeller om det hör ihop med bindningar mellan atomer/molekyler (förmåga att röra sig)? närhet mellan atomer/molekyler (förmåga att leda vidare) Men olika ämnens egenskaper säger mot varandra. Tacksam för förklaring som går att använda på högstadiet.
/Eva R, Sturebyskolan, Stockholm

Svar:
Eva! Specifik värmekapacitet är ett ganska svårt ämne, så det finns inget enkelt svar på din fråga. Värme är ju slumpmässig rörelse hos molekyler, så den specifika värmekapaciteten bestäms inte av densiteten direkt utan i princip av antalet molekyler och antal frihetsgrader per molekyl. För det första så finns det inget samband mellan värmeledningsförmåga och specifik värmekapacitet. För värmeledningsförmåga se fråga 3874 .

Först några definitioner:

Gaskonstanten (i allmänna gaslagen): R = 8.3145 J/(mol*K)

Boltzmanns konstant: k = 1.38065*10-23 J/K
är en naturkonstant som relaterar temperatur för en mängd partiklar (molekyler) till energi på partikelnivå. Konstanten betecknas med kB eller bara k och motsvarar den allmänna gaskonstanten R dividerad med Avogadros tal NA.

Avogadros tal: NA = 6.02214*1023 /mol
är en fysikalisk konstant som anger antalet atomer eller molekyler i en mol av en substans.

R = k*NA (k hänför sig alltså till en molekyl och R hänför sig till en mol, dvs NA molekyler)
(R = 1.38065*10-23*6.02214*1023 = 8.3145)

För fasta ämnen och vätskor är det inte helt lätt, men låt oss börja med en gas eftersom det är lättare att förstå.

Figuren nedan (från Heat_capacity ) visar värmekapaciteten CV för en tvåatomig gas (t.ex. N2) dividerat med gaskonstanten R som funktion av den absoluta temperaturen. För det första kan vi konstatera att CV varierar med temperaturen. Detta gäller oftast även för vätskor/fasta ämnen.

Varje frihetsgrad har värmekapaciteten (1/2)R J/mol eller (1/2)k J/partikel. Låt oss betrakta en tvåatomig gas, se figuren nedan. Molekylen kan röra sig i tre riktningar x,y och z. Vi har alltså 3 frihetsgrader och värmekapaciteten vid låga temperaturer blir (3/2)R.

Vid lite högre temperaturer kommer nya frihetsgrader in för en tvåatomig gas (för en enatomig gas förblir värmekapaciteten (3/2)R). Först rotation. En tvåatomig molekyl kan rotera kring två axlar. Den tredje axeln är linjen mellan de två atomerna, och den kommer inte i fråga av kvantmekaniska skäl (symmetri). Vi har alltså ytterligare två frihetsgrader, och vid normala temperaturer är CV = (5/2)R. (Figuren är lite missvisande här eftersom detta är temperaturområdet en tvåatomig gas normalt befinner sig i.)

Vid ytterligare högre temperatur kommer även vibrationer in. Molekylen kan vibrera längs axeln som definieras av linjen mellan atomerna. Denna vibration har två frihetsgrader (potentiell energi och kinetisk energi), så CV = (7/2)R.

Vad händer då med fasta ämnen/vätskor? Alla atomer binds till sina närmaste grannar. Vi bör alltså ha tre vibrationstillstånd (x, y och z) med två frihetsgrader var (potentiell energi och kinetisk energi). CV bör alltså vara

3*2* (1/2)R = 3R

Detta kallas Dulong-Petits lag. Denna stämmer ganska väl för de flesta ämnen. Det tillkommer emellertid ett par komplikationer. För vissa ämnen, speciellt lätta ämnen med starka bindningar som C och Be, är vissa av vibrationstillstånden blockerade vid rumstemperatur eftersom excitationsenergin är för hög. Värmekapaciteten blir då lägre än 3R. Dessutom är det antalet atomer som bestämmer CV. I tabellen Heat_capacity#Table_of_specific_heat_capacities ges CV i sista kolumnen i enheten J/(mol*K*atom). Om man har ett sammansatt ämne i fast form måste man alltså multiplicera värdet med antalet atomer i en molekyl. Ta luft som exempel. Luft består till största delen av tvåatomiga molekyler. Vi måste alltså multiplicera det givna värdet 1.25 med antalet atomer i en luftmolekyl (2) för att få det korrekta värdet (5/2)R.

Eftersom vibrationstillstånden inte kan exciteras vid låg energi brukar CV för fasta ämnen gå mot noll när temperaturen går mot noll.

Se även fråga 17968 .



/Peter E

Nyckelord: specifik värmekapacitet [21]; gaslagen, allmänna [21];

*

Värme [18939]

Fråga:
Hej, Hur mycket ökar temp i ett bildäck om man fyller i mera luft så att trycket ökar från 1 Bar till 2 Bar? Eller är det bara n (ref till Gaslagen) som ökar? MVH/Ingvar
/Engde I, Vidareutbildning, Sollentuna

Svar:
Det beror på hur man fyller däcket. Om man fyller långsamt så att det sker värmeutbyte med omgivningen så är temperaturen konstant (isoterm process):

Isoterm process är en termodynamisk process som förlöper vid konstant temperatur.

I gaslagen

pV = nRT

är allt utom p och n konstant.

För en snabb process utan värmeöverföring med omgivningen (adiabatisk) ändrar sig tre av variablerna: p, V och T. Gaslagen räcker inte till för att lösa problemet, utan man måste även använda sambandet som gäller för adiabatiska processer (se Adiabatic_process , länk 1 och nedanstående figur).

Adiabatisk process är en termodynamisk process där ingen värme tillförs eller bortförs från en fluid. För en adiabatisk process gäller sambandet

pV g = konstant

där g är 7/5=1.4 för luft.

Med hjälp av gaslagen

pV = nRT

kan man härleda övriga varianter av adiabat ekvationen (Adiabatic_process#Ideal_gas_(reversible_process) ):

TV (g-1) = konstant

och

p (1-g) T g = konstant

Tillämpar vi den senare vid begynnelsetemperaturen 293 K (20oC) får vi

1 -0.4 2931.4 = 2 -0.4 T 1.4

2 0.4 2931.4 = T 1.4

1.32*2842 = T 1.4

T = (1.32*2842)1/1.4 = 357 K

vilket är 357-273 = 84oC.

Vid en adiabatisk kompression ökar alltså temperaturen och vid expansion minskar temperaturen. Termodynamiskt kan man förstå detta som att vid expansion utför gasen ett arbete på kolven. Energin tas från värmeinnehållet i gasen, varför gasen kyls.

Mikroskopiskt (på molekylnivå) kan man se det så att gasmolekylerna förlorar energi (hastighet) när de kolliderar med den bortflyende kolven medan de vinner energi när de kolliderar med en kolv som rör sig mot dem.



/Peter E

Nyckelord: gaslagen, allmänna [21]; termodynamik [16];

1 http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/adiab.html

*

Kraft-Rörelse [18007]

Fråga:
Undrar hur lufttrycket ändras i en tank på grund av temperaturen. Jag har en tank på 2000 liter som är trycksatt till 0,35 bar för läcksökning. Dagen efter är trycket 0,32 bar. Dock har inga läckor hittats, men temperaturen är lägre i rummet eftersom ett fönster stått öppet. Kan detta vara orsaken. Hur räknar man ut skillnaden i tryck beroende på omgivande temperatur? Tack för hjälpen!
/Magnus B, Komvux, Hörby

Svar:
Jag antar du menar övertryck. Då har ju även lufttrycket betydelse. För tillförlitlig mätning måste du korrigera för detta!

Vi tillämpar gaslagen på gasen i tanken:

pV=nRT

Vi har två tidpunkter, dag 1 och dag 2 (V, n och R konstant):

p1/p2 = T1/T2

Vi får

T1/T2 = 1.35/1.32 = 1.0227

(totala trycket är lufttrycket + övertrycket)

Om temperaturen första dagen var 20oC (293 K) får vi

T2 = 293/1.0227 = 286 K = 13oC

En temperaturändring på 7 grader är inte omöjlig, men det hade varit bra om du mätt temperaturen eller stängt fönstret. Du borde även mätt lufttrycket. Först då kunde du vara säker på att du inte hade en läcka!
/Peter E

Nyckelord: gaslagen, allmänna [21];

*

Kraft-Rörelse [17710]

Fråga:
Varför har tävlingsbilar kväve och inte luft i däcken?
/Veckans fråga

Ursprunglig fråga:
Tävlingsbilar har kväve i däcken för att minska tryckökningen när däcken blir varma. Kväve borde väl expandera ung lika mycket som vanlig luft när däcken blir varma? Luft innehåller fukt, men har det verkligen betydelse i detta fall? Hur stor betydelse i så fall? Och varför?

Mvh Niclas
/Niclas P, Rudbeckskolan, Sollentuna

Svar:
Niclas! Det finns mycket diskussion om nytta eller inte nytta med kväve i däck, se t.ex. länk 1 nedan, Eftersom luft är nära 80% kväve är det klart att effekten av att fylla däcken med kväve i stället för luft är mycket marginell. Det låter alltså för den vanlige bilföraren som en bluff för att lura pengar av oss - tänk att till höga priser kunna sälja i stort sett luft!

För vissa speciella tillämpningar kan det nog ha en liten betydelse, t.ex. för ett flygplansdäck som blir överhettat. Man kan även tänka sig att gummit med tiden oxideras av syret och därmed blir sprött. Jag tror emellertid att mönstret slits ut innan man märker av effekten av oxidation.

Att syret skulle läcka ut snabbare måste vara en liten effekt. Syremolekylen är visserligen lite mindre än kvävemolekylen (eftersom samma skal fylls och kärnladdningen är högre för syre). Detta motverkas av att diffusionshastigheten är högre för en lättare molekyl (kväve). Skulle man se någon effekt i lufttrycket så måste hälften av syret läcka ut, och det tror jag inte på. Dessutom kontrollerar väl varje bilförare däcktrycket regelbundet !

Att kvävet skulle ha något med tryckökningen när temperaturen blir högre är också nonsens. Från allmänna gaslagen kan man härleda (se fråga 15619 )

Dp/p = DT/T

Alltså den relativa tryckändringen beror endast av temperaturer, inte av vilken gas man har! Det är emellertid sant som du säger att man använder kvävgas till däcken i tävlingsbilar. Det kan knappast vara läckage (däcken på en Formel 1 bil varar högst någon timme). Knappast oxidation heller. Möjligen lite säkrare vid brand, men Formel 1 bilar brinner sällan i dag. Förklaringen ges i länk 2.

Kvävet innehåller alltså ingen vattenånga eftersom det framställs genom att kyla ner luft tills kvävet kondenseras till vätska, och vattnet fryser bort på ett tidigt stadium. Vatten ställer till det i däcket eftersom det kan kondensera till vätska vid låg temperatur, men blir ånga vid hög temperatur. Vid hög temperatur har vi alltså fler molekyler (luft+vattenånga) och därmed högre tryck. Gaslagen säger ju

pV = nRT,

så om antalet mol n ökar så ökar trycket. Man kan se det så att eftersom n ökar med temperaturen (fler molekyler i gasfas) blir sambandet p-T olinjärt.

Användandet av kväve är alltså ett villospår, och det är som du föreslår vatteninnehållet som är det viktiga. Man kan lika gärna använda luft så länge den inte innehåller något vatten. Tydligen är det emellertid enklare att framställa kvävgas än torr luft!
/Peter E

Nyckelord: gaslagen, allmänna [21];

1 http://www.straightdope.com/columns/read/2694/is-it-better-to-fill-your-tires-with-nitrogen-instead-of-air
2 http://auto.howstuffworks.com/question594.htm

*

Blandat [17572]

Fråga:
Det sägs att anledningen till att tärnor och lucior ibland svimmar under själva framträdandet skulle bero på syrebrist eftersom de levande ljusen skulle förbruka syret. Kan detta verkligen stämma?
/Björn K, Trollehöjdskolan, Mullsjö

Svar:
Björn! Jag tror inte det, men låt oss göra en uppskattning av hur mycket syrehalten kan tänkas minska. Vi gör följande antaganden:

* Ett nomalljus brinner med hastigheten 1 cm/5 minuter och tvärsnittsytan är 1 cm2
* Ljus består i dag normalt av paraffin
* Paraffinets densitet är 0.8 g/cm3
* På 5 minuter bränner ljuset 1 cm3 paraffin dvs 0.8 g
* Typreaktionen för förbränning av paraffin är (Paraffin ):

C30H62 + 45.5O2 -> 30CO2 + 31H2O

Dvs
30*12+62*1=422 g paraffin förbrukar
45.5*32=1456 g syre
0.8 g paraffin förbrukar då 0.8*1456/422=2.8 g syre

Vi använder den allmänna gaslagen (fråga 16511 ) för att beräkna hur mycket syre det finns i 1 m3:

pV = nRT dvs

n = pV/RT

Vi antar att temperaturen T är 300 K (varm rumstemperatur). Volymen V är 1 m3, och trycket 0.2*1.013 105 Pa (luften består till 20% av syre). Gaskonstanten är 8.315 J mol-1 K-1. Vi får

n = 20000*1/(8.315*300) = 8 mol = 8*32 g = 256 g

Nu har vi allt vi behöver för att räkna ut hur mycket syre det går åt. Vi antar vi har ett rum på 4*6*2.5 = 60 m3 utan ventilation. Mängden syre i rummet är då 60*256 = 15000 g.

Om vi antar luciatåget har totalt 20 st tända ljus så går det åt 2.8*20 = 56 g.

På 5 minuter förbrukas alltså bråkdelen 56/15000 = 0.0037 = 0.37%. Detta är en helt försumbar bråkdel, som inte kan orsaka lucians svimning. Det är nog snarare spänningen som orsakar svimningen.

En 100 kg man konsumerar i vila enligt länk 1 350 ml O2 per minut. Detta är 0.35/22=0.016 mol eller 0.016*32=0.5g, dvs 2.5 g/5 min. Detta är nästan exakt lika mycket som ett stearinljus förbrukar (2.8 g enligt ovanstående uppskattning).
/Peter E

Nyckelord: gaslagen, allmänna [21]; *kemi [12]; stearinljuslåga [13];

1 http://wiki.answers.com/Q/What_is_the_Resting_oxygen_consumption_by_adult_human

*

Kraft-Rörelse [16511]

Fråga:
Exploderar spayburkar vid hög temperatur?
/Veckans fråga

Ursprunglig fråga:
På sprayburkar står att de inte ska utsättas för hög värme (+50grader) och enligt fysikboken är det pga explosionsrisken (högt tryck). Programmet Mythbusters testade flera olika sorters burkar och fick ingen att explodera. Vad gäller egentligen?
/Marianne L, Frostaskolan, Hörby

Svar:
Marianne! Vid tillräckligt högt tryck går säkert burken sönder. Detta är ingen myt. Låt oss titta på vad som händer med trycket.

Om det bara finns gas i burken (dvs burken är nästan tom) kan man tillämpa allmänna gaslagen (gaslagen, allmänna ):

pV = nRT

(p tryck i Pa, V volym i m3, n antal mol gas, R gaskonstanten 8.314 J/(mol*K), T absoluta temperaturen i K)

Trycket ökar alltså med absoluta temperaturen för konstant volym. Om vi utgår från 20 grader som normaltemperatur så ökar trycket vid 50 grader med faktorn (50+273)/(20+273) = 1.10, alltså med 10%. Vi måste gå till över 300 grader för att trycket skall fördubblas. Så om burken innehåller en ideal gas (allt i burken är i gasform) är det ingen fara, eftersom burken bör tåla ganska höga temperaturer.

Men en sprayburk innehåller emellertid inte bara gas utan även vätska. I en genomskinlig behållare (t.ex. en cigarrettändare, se fråga 16119 nedan) kan man se detta. Om man skakar en spayflaska försiktigt, kan man känna att en vätska "skvalpar omkring" inne i burken. Problemet är då inte lösbart med antagandet om en ideal gas, utan man måste ta hänsyn till vätskans Ångtryck .

Ångtrycket är relaterat till vätskans kokpunkt - kokpunkten vid 1 atmosfärs tryck är den temperatur vid vilken vätskans ångtryck är 1 atm. Bilden nedan från Wikimedia Commons visar ångtrycket för några vätskor som funktion av temperaturen. De olika ämnena i figuren uppför sig ganska lika, med skillnaden att kokpunkten är mycket olika. Om vi tar neo-Pentan (mörkgrön kurva) som exempel ser vi för det första att kokpunkten vi trycket 1 atm är 10 grader. För några olika temperaturer kan vi läsa av följande från kurvan:

10oC - 1 atm
20oC - 1.4 atm
50oC - 3.5 atm
80oC - 8 atm

Vi ser alltså att trycket ökar mycket med förhöjd temperatur.

Vad kan vi dra för slutsatser? För det första att Mythbusters test visade att tillverkarnas rekommenderade högsta temperatur var konservativt säker. Det framgår inte hur högt upp i temperatur man gick vid testen. För det andra kan man dra slutsatsen att om burken bara innehåller gas, så tål den ganska höga temperaturer. Om burken emellertid även innehåller vätska ökar trycket mycket snabbt med temperaturen, så burken kommer till slut att explodera.



/Peter E

Se även fråga 16119

Nyckelord: gaslagen, allmänna [21]; kokpunkts/fryspunkts förändring [10];

*

Kraft-Rörelse [15619]

Fråga:
Att öppna glasburkar med metallock
/Veckans fråga

Ursprunglig fråga:
Jag upplever att glasburkar med metallock går lättare att öppna om man spolar varmt vatten på. Vad är det som händer? Varför blir det så? Har det med att göra att metallocket sväller av värmen fortare än vad glaset gör och på så sätt lossnar det? Eller har det nåt med vakuum att göra att det upplöses när varmt vatten spolas på?
/Malin D, Lärarhögskolan, Stockholm

Svar:
Malin! Du har bra idéer om orsaken. Framför allt två effekter kan spela in. Den första effekten om man värmer burken snabbt och den andra om man värmer den länge.

Termisk expansion (att material utvidgar sig när temperaturen blir högre): Metaller utvidgar sig mer än glas, se tabell i artikeln Coefficient_of_thermal_expansion . Lägg märke till att den öppna delen av locket expanderar som om den vore gjord av metallen. Utvidgningskoefficienten för hål är alltså lika med den för omgivningen, se länk 1 (stycket "Thermal expansion : expanding holes") för bevis. Dessutom leder metall värme bra, medan glas leder värme dåligt. Locket blir alltså varmare än glaset, vilket förhöjer effekten att locket expanderar relativt burken. Det blir då lättare att lossa locket dels för att kontakten med burken blir mindre, och dels för att eventuella tryckskillnader kan utjämnas (se nedan).

Att ett hål expanderar som omgivningen används i mekanisk industri för något som kallas krympförband (Shrink-fitting ).

Undertryck: Locket sätts på vid en förhöjd temperatur. För en ideal gas gäller den ideala gaslagen (se fråga 15294 eller Gas_laws ) att

pV = nRT

Vid konstant volym V och konstant mängd gas (n) är tryckändringen Dp proportionellt mot temperaturändringen DT. Vi får

Dp/p = DT/T

Om omgivningstemperaturen är 20oC = 293 K och temperaturen när locket sattes på 100oC får vi

Dp = p*80/293 = 1.013*105*80/293 = 28000 N/m2 (pascal, Pa)

Om locket har en radie på 3 cm är ytan 32*p, dvs c:a 30 cm2. Totala kraften på locket blir då

0.0030*28000 = 84 N. Detta motsvarar kraften som krävs för att lyfta c:a 8 kg, alltså en ganska stor kraft.

Om man värmer upp burken genom att hålla den länge under varmvattenskranen reduceras tryckskillnaden och därmed kraften. Observera alltså att tricket att hålla burken under varmvattenkranen hjälper för båda förklaringarna ovan!

Mikroskopisk förståelse av gaslagen:
Man kan förstå varför en viss mängd luft ger lägre tryck vid lägre temperatur. Temperatur är ett mått på molekylernas medelhastighet - om vi har låg temperatur så rör sig molekylerna långsamt. De kommer därför att kollidera med väggarna mindre ofta och mindre våldsamt än om temperaturen är hög. Det är just molekylernas kollektiva effekt på väggarna som makroskopiskt (i vår värld, till skillnad från molekylernas mikroskopiska värld) uppfattas som tryck.
/Peter E

Nyckelord: utvidgning [5]; gaslagen, allmänna [21]; *vardagsfysik [60];

1 http://physics.bu.edu/~duffy/py105/Temperature.html

*

Kraft-Rörelse [15377]

Fråga:
Hur många heliumballonger krävs för att lyfta en tjej på 25 kg?
/Veckans fråga

Ursprunglig fråga:
Hej! Jag jobbar som lärare i en 2:a klass och idag läste vi en bok där en tjej flög iväg med ballonger. Klassen började diskutera om man faktiskt kunde göra detta på riktigt. Så min fråga är, är det möjligt att om man har tillräckligt med heliumballongern sväva iväg? Och i så fall det är en flicka som väger 25 kilo hur många helium ballonger krävs det för att hon ska lyfta och flyga iväg? Jag är väldigt tacksam för svar eftersom barnen nu är väldigt nyfikna på om man faktiskt kan göra så.
/Mia S, Stenkulaskolan, Malmö

Svar:
Hej Mia! Jodå, med tillräckligt många ballonger kommer flickan att sväva iväg. Nedan finns en överslagsräkning hur mycket ballonger det krävs. Räkningarna är inte helt triviala, men 2:a klassarna får lita på att räkningarna är korrekta.

Enligt Arkimedes princip är lyftkraften lika med den undanträngda luftens vikt:

lyftkraft = volym*(luftens densitet)*g

Heliumet i ballongen ger en nedåtriktad kraft, så nettolyftkraften blir

nettolyftkraft = volym*(luftens densitet - heliumets densitet)*g

Vi har här bortsett från vikten hos ballongmaterialet (gummit). Tyngdkraften på en 25 kg flicka är

F = m*g = 25*g

Om vi sätter denna lika med nettolyftkraften får vi med V som totala ballongvolymen och d som densiteter:

25*g = V*(dluft - dhelium)*g

dvs

V = 25/(dluft - dhelium) m3

Luftens densitet vid 20oC är c:a 1.2 kg/m3. Vad är då heliums densitet vid samma temperatur? Enligt gaslagen, allmänna innehåller en viss volym av en gas lika många mol oberoende av vilken gas det är. Densiteten skalar sig alltså som molekylvikten. Heliums molekylvikt är 4 och luftens 28.8. Heliums densitet blir alltså

dhelium = (4/28.8)*1.2 = 0.17 kg/m3

Volymen som krävs blir alltså

V = 25/(1.2 - 0.17) m3 = 24 m3

Om en klotformig ballong har diametern 40 cm så blir radien r 0.2 m och volymen

4*p*r3/3 = 4*p*0.23/3 = 0.034 m3

Det krävs alltså 24/0.034 = c:a 700 ballonger!

Vi har här bortsett från två saker: vikten hos ballongmaterialet och det faktum att man om ballongen är gjord av ett elastiskt material får lite högre tryck och därmed högre densitet innuti ballongen. Detta därför att gummits elasticitet orsakar en kraft som trycker ihop den inneslutna gasen. Man kan komma ifrån denna effekt om man använder sig av icke elastiska plastballonger.

Ursäkta att detta blev lite tekniskt, men om man vill ha ett kvantitativt svar så går det nog inte att göra enklare. Det som behövs är alltså två enkla fysikaliska lagar, Arkimedes princip och Den allmänna gaslagen, som båda sedan länge är väl etablerade både experimentellt och teoretiskt.

Se även länk 1.
/Peter E

Nyckelord: Arkimedes princip [25]; gaslagen, allmänna [21]; ballong [16];

1 http://science.howstuffworks.com/science-vs-myth/everyday-myths/question185.htm

*

Kraft-Rörelse [15294]

Fråga:
Varför är en frysskåpsdörr så trög att öppna igen, efter att man precis har stängt den?
/Veckans fråga

Ursprunglig fråga:
Varför är en frysskåpsdörr så trög att öppna igen, efter att man precis har stängt den?
/Lina T

Svar:
Det är så att man inte skall kunna nalla av glasspinnarna hela tiden .

Det är lufttrycket som håller igen dörren. Avkylningen av luften i frysen orsakar ett undertryck. Efter en stund (några minuter) utjämnas detta undertryck eftersom frysen inte är helt tät.

Låt oss göra en uppskattning av hur stor kraften kan bli. Vi använder den allmänna gaslagen:

pV = nRT

p = trycket, V = volymen, n = antal mol, R = allmänna gaskonstanten,
T = absoluta temperaturen

Anta att rumstemperaturen är 20oC och temperaturen i frysen är -20oC. I gaslagen skall vi använda absoluta temperaturer, så temperaturerna blir Trum=273+20=293 K och Tfrys=273-20=253 K.

Vi kan skriva gaslagen som

p = (nR/V)T = konstant*T

Om n är antal mol gas i frysen när dörren precis stängs, så är n och naturligtvis även V konstanta. Vi får

pfrys = konstant*Tfrys
prum = konstant*Trum

Varav följer

pfrys = (Tfrys/Trum)*prum

Normaltrycket i rummet är ungefär 105 Pa (N/m2) varför vi får

pfrys = (253/293)*105 = 86348 Pa

Undertrycket blir alltså 100000-86348 = 14000 Pa

Om dörrens yta är 1 m2 så är alltså kraften från övertrycket hela 14000 N. Detta motsvarar en vikt på 1400 kg!

Detta låter ganska mycket (vi borde inta alls kunna få upp dörren), men vi har räknat lite väl optimistiskt. För det första hinner inte all luft i den kalla frysen bytas ut. Om vi har dörren öppen så länge att all luft bytts ut, kommer det i stället ta mycket lång tid att kyla ner luften, och rumsluft kommer att läcka in. Dessutom är handtaget placerat i kanten av dörren och inte i mitten. Hävstångslagen ger då att den erforderliga kraften blir hälften så stor.

En riktigt gammal horisontell frys ger inte stor effekt eftersom den kalla luften stannar i frysen - kall luft har ju högre densitet. En modern frys med plastbackar ger även den liten effekt eftersom ingen kall luft kommer in. En halvgammal öppen frys ger bäst effekt - den kalla luften formligen rinner ut när man öppnar dörren!

Enkelt experiment:
För att illustrera att kall luft ger undertryck: Sätt på korken på en tom PET-flaska och lägg flaskan i frysen. När flaskan är kall tar man ut den och lossar försiktigt på korken. Vad händer och varför?
/Peter E

Nyckelord: gaslagen, allmänna [21]; lufttryck [18]; hävstång [5];

*

Kraft-Rörelse [15174]

Fråga:
Hur väger man luften i klassrummet?
/Veckans fråga

Ursprunglig fråga:
Hur väger man luften i klassrummet?
/anna k, tranängs skolan, tranemo

Svar:
Hej Anna! Ställ en våg under klassrummet. Stäng dörrar och fönster och pumpa ut all luften. Du kommer att se en ändring i utslag som motsvarar luftens vikt .

Nej, så enkelt är det inte. Det är inte alls lätt att direkt mäta luftens densitet. Att luften väger något är lättare att visa, se fråga 14454 och länkarna nedan.

Låt oss i stället försöka räkna ut densiteten från andra storheter som är lättare att mäta. Det är ofta så i fysik att något kan vara svårt att mäta direkt medan det kan vara lätt att beräkna med kända fysikaliska lagar och andra storheter.

Vi använder den allmänna gaslagen:

pV = nRT

p = trycket, V = volymen, n = antal moler, R = allmänna gaskonstanten,
T = absoluta temperaturen

Om m är massan gas och M gasens molekylvikt kan vi skriva gaslagen

pV = (m/M)RT

Eftersom densiteten r = m/V får vi

r = pM/(RT)

Normaltrycket är 1.013*105 Pa (N/m2), luftens molekylvikt (en blandning av 80% N2 och 20% O2) är 28.8. Normal temperatur är 20oC = 293 K.
Gaskonstanten är 8315 J kmol-1 K-1. Vi får då

r = 1.013*105*28.8/(8315*293) = 1.20 kg/m3. Om klassrummet är 10*10*3 = 300 m3, väger luften 300*1.20 = 360 kg, alltså lika mycket som fyra manliga normallärare!
/Peter E

Se även fråga 14454

Nyckelord: lufttryck [18]; gaslagen, allmänna [21];

1 http://teachersnetwork.org/ntol/lessons/weighair/
2 http://www.discoverychannel.co.uk/mythbusters/experiments/air/index.shtml

*

Blandat [14813]

Fråga:
Hur går det till att väga gaser? Speciellt sådana som är lättare än luft. Hur kan man säga att man till exempel släpper ut ett visst antal kilo koldioxid per dygn. Det är lättare att förstå om man skulle mäta i liter istället.
/Olle Ö, Norgården, Uddevalla

Svar:
När det gäller att ta reda på utsläpp behöver man inte mäta dem, man kan räkna ut dem. Om du använder 1 liter bensin vet du hur mycket koldioxid det producerar. Ta det enklaste fallet kolförbränning som exempel. De kemiska formeln är:

C + O2 --> CO2

Eftersom molekylvikten för kol är 12 och molekylvikten för koldioxid är 44 kan man se att 12 g kol ger upphov till 44 g koldioxid. Eftersom man dessutom (genom allmänna gaslagen) vet att en mol av en gas alltid upptar samma volym (c:a 22 liter), kan man även räkna ut volymen. Se vidare länk 1.
/Peter E

Nyckelord: gaslagen, allmänna [21];

1 http://school.chem.umu.se/dbatommassa.html

*

Värme [14198]

Fråga:
Varför kokar vattnet då vattenångans tryck är lika stort som lufttrycket?
/Veckans fråga

Ursprunglig fråga:
Hej! Varför är luften ovanför en vattenyta full av vattenånga? Varför kokar vattnet då vattenångans tryck är lika stort som lufttrycket? Kan man med den allmänna tillståndslagen för gaser (pV/T) förklara varför kokpunkten kan sänkas om trycket minskar?
/Cissi K, Värmdö, Stockholm

Svar:
Luften ovanför en vattenyta innehåller en del vattenmolekyler som slitit sig från ytan. Vid en viss temperatur är det jämvikt mellan ångan och vattnet - lika många vattenmolekyler kondenseras till vattnet som frigörs till luften. Om temperaturen är högre kan luften innehålla mer vattenånga.

Vid kokpunkten är det s.k. partialtrycket hos ångan lika med lufttrycket, se bilden nedan från Hyperphysics. Då kan "luften" bestå till 100% av vattenånga - syret och kvävet har trängts bort. Vid kokpunkten kan det också bildas bubblor av vattenånga (normalt på botten av kastrullen som är nära värmekällan och därför varmare). Om vattentemperaturen understiger kokpunkten så kan inga bubblor bildas eftersom de trycks ihop av det större lufttrycket.

Kokpunktens förändring med tryckets kan inte förklaras med allmänna gaslagen eftersom kondenserande vattenånga är långt ifrån en ideal gas. Förändringen av kokpunkten med trycket är i själva verket en ganska komplicerad olinjär funktion. För mer om ämnet se nedanstående länkar.



/Peter E

Nyckelord: kokande vatten [15]; gaslagen, allmänna [21]; kokpunkts/fryspunkts förändring [10];

1 http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/vappre.html
2 http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/vappre.html#c4

*

Kraft-Rörelse [13994]

Fråga:
Varför ändrar sig inte trycket i ett bildäck? Det är samma tryck antingen man har bilen upphissad eller man belastar däcket med bilens tyngd.
/Niklas J, Östanåskolan, Eksjö

Svar:
Hur vet du att det är samma? Har du mätt det? Det är i varje fall helt korrekt: volymen V (och därmed trycket p enligt allmänna gaslagen pV=nRT) ändrar sig mycket lite när man belastar däcket. Vad är det då som håller upp bilen? Låt oss räkna lite!

Antag att vi har en bil med 4 hjul. Bilen väger 1000kg. Det blir alltså 1000kg/4= 250kg per hjul. Det normala övertrycket är 2 kg/cm2, vilket betyder att vi behöver en yta på 250/2 = 125 cm2. Detta är lite drygt 10 cm x10 cm, vilket är ungefär anläggningsytan mot marken.

Vi kan alltså förstå hur bilen hålls uppe: övertrycket i däcket (kraft riktat neråt) kompenserar för normalkraften från marken (riktad uppåt). Om man ökar lasten hos bilen är det framför allt att anläggningsytan som ökar för att kompensera den större nedåtriktade kraften. Volymen, och därmed trycket, ändras alltså mycket lite.

Men vafalls? Om vi hissar upp bilen med domkrafter så är det dessa som lyfter bilen. Har vi inte för mycket krafter nu? Var blir det av kraften som övertrycket orsakar? Den tas upp av gummit i däcket! När man pumpar upp ett däck så expanderar det lite grann. I ett elastiskt material som gummi får man då en motkraft (som ett något utdraget gummiband). Det är denna motkraft som tar ut kraften från övertrycket.

När man sedan hissar ner bilen kommer gummit att gå tillbaka till normalläget i anläggningsytan, så att kraften från gummit försvinner (som ett slappt gummiband).

Hoppas detta blev begripligt !
/Peter E

Nyckelord: gaslagen, allmänna [21];

*

Värme [10641]

Fråga:
Varför blir det kallare ju högre upp man kommer från jordytan?
/Joel R, Slottsstaden, Malmö

Svar:
Lufttrycket är proportionellt mot mängden luft ovanför. När man stiger uppåt minskar alltså trycket. När man minskar trycket i en viss gasmängd sjunker temperaturen. I den del av jordatmosfären som kallas troposfären (upp till c:a 10 km) är temperaturen sådan att man kan transportera en luftmängd upp eller ner i stort sett utan arbete. Det är ganska lätt att med gaslagarna räkna ut hur temperaturen varierar med höjden. Nere vid jordytan sjunker temperaturen med ungefär 1 oC vid 100 m stigning.

Vid 10 km höjd, där trafikflyget normalt går, är det -50 oC. I stratosfären, som ligger ovanför, stiger temperaturen med höjden. Det beror bland annat på att ozon absorberar ultraviolett ljus från solen. Vid 35 km höjd är det ungefär 0 oC.
/KS

Se även fråga 3540 och fråga 319

Nyckelord: gaslagen, allmänna [21];

*

Värme [8401]

Fråga:
Kan man med experiment fastställa absoluta nollpunkten?
/Ylva G, Nosaby, Kristianstad

Svar:
Den klassiska metoden att bestämma den absoluta temperaturen är gastermometern. Man mäter till exempel trycket vid konstant volym vid 0 oC och 100 oC. Med hjälp av allmänna gaslagen kan man räkna ut absoluta temperaturen, och därmed absoluta nollpunkten. Detta förutätter att gasen är en ideal gas, vilket stämmer ganska bra, men inte perfekt. Sedan finns naturligtvis mera raffinerade metoder. När man ska mäta temperaturer vid en miljondels grad från absoluta nollpunkten, får man använda helt andra metoder. Se vidare About Temperature och Temperature .
/KS

Nyckelord: termometer [7]; absoluta nollpunkten [9]; gaslagen, allmänna [21];

*

Värme [7692]

Fråga:
Hej Vi håller på med att bygga varmluftsballonger och jag undrar om ni kan hjälpa mig med en fråga. Jag undrar nämligen vad luftens densitet är när den blir uppvärmd. Jag vet att kall lufts densitet är 1,293 kg/m3. Tack så mycket!
/Filippa H, Vasa real, Sthlm

Svar:
Vid konstant tryck är densiteten omvänt proportionell mot absoluta temperaturen. Detta följer av allmänna gaslagen:

pV = nRT

p = trycket, V = volymen, n = antal moler, R = allmänna gaskonstanten,
T = absoluta temperaturen

Densiteten (r) är proportionell mot n/V. Ommöblering av gaslagen ger

n/V = p/RT

dvs

r = konst/T

Från densiteten 1.293 kg/m3 vid 0oC kan vi räkna ut konstanten konst:

konst = 1.293*(0+273) = 353

Luftens densitet vid t.ex. en temperatur av 150oC blir då

353/(150+273) = 0.83 kg/m3
/KS/lpe

Nyckelord: gaslagen, allmänna [21]; ballong [16];

*

Blandat [658]

Fråga:
Hej! Jag undrar lite kring en laboration. Det är när man tänder ett värmeljus i ett vattenbad och ställer ett kärl över. Då stiger vattennivån och ljuset slocknar. Jag har fått två förklaringar från påstått välunderättat håll på detta. Den gamla som säger att syret förbränts och att koldioxiden till viss del lösts i vattnet och den senare att det bara beror på värmeutvidgning och sedan avkylning. I det senare fallet borde det väl bubbla ut luft när denna värms upp i bägaren? Kanske ligger det gamla svaret inom kemins värld men ni kanske ändå kan svara på detta triviala men intressanta problem.
/oskar g, Kråkbergsskolan, luleå

Svar:
Stearin innehåller mycket väte men också kol. Vid förbränningen av syret bildas därför både vatten i gasform och koldioxid.

En kolatom och en syremolekyl (alltså två syreatomer) reagerar och bildar en koldioxidmolekyl. Detta innebär att man tillför lika många koldioxidmolekyler till gasen som det försvinner syremolekyler. Volymen ändras inte på grund av detta eftersom ett visst antal gasmolekyler alltid tar lika stor plats, oavsett vilken gasen är (allmänna gaslagen).

En syremolekyl som omvandlas till vatten ger däremot upphov till två vattenmolekyler. Detta innebär att gasen tillförs dubbelt så många vattenmolekyler som den förlorar syremolekyler, och en volymökning sker. Här är resonemanget igen men med kemiska formler:

Stearin är i stort sett ett kolväte med två gånger så många väteatomer som kolatomer (se Stearin ). Förbränningsreaktionen blir då:

H2C + 1.5 02 -> H2O + CO2

Antalet molekyler i gasen ökar alltså vid förbränningen (från 1.5 till 2). Då dessutom temperaturen stiger så borde gasvolymen öka – varm gas tar nämligen upp större plats än kall gas. Men i experimentet ser vi att gasvolymen i själva verket minskar. Förklaringen till det är att all vattenångan efter hand kondenserar så att bara koldioxiden blir kvar i gasform. Vi går alltså från 1.5 syremolekyler i gasen före reaktionen till 1 koldioxidmolekyl efter reaktionen. På så vis får vi ett undertryck under kärlet och vattnet i vattenbadet sugs upp och släcker ljuset.
/GO/lpe

Nyckelord: gaslagen, allmänna [21];

*

Ämnesområde
Sök efter
Grundskolan eller gymnasiet?
Nyckelord: (Enda villkor)
Definition: (Enda villkor)
 
 

Om du inte hittar svaret i databasen eller i

Sök i svenska Wikipedia:

- fråga gärna här.

 

 

Frågelådan innehåller 7168 frågor med svar.
Senaste ändringen i databasen gjordes 2017-07-06 14:08:20.


sök | söktips | Veckans fråga | alla 'Veckans fråga' | ämnen | dokumentation | ställ en fråga
till diskussionsfora

 

Creative Commons License

Denna sida från NRCF är licensierad under Creative Commons:
Erkännande-Ickekommersiell-Inga bearbetningar
.