Vill du ha ett snabbt svar - sök i databasen:

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

303 frågor / svar hittades

Varför ramlar inte elektronerna in i kärnan?

Fråga:
Hej! Vi känner alla till den vanliga atommodellen, med en kärna i mitten och elektroner som snurrar runt den. Men den förklarar inte flera saker som, t.ex, varför fäster sig inte elektronerna direkt på kärnan? Så jag undrar om det finns någon bättre modell över atomen som förklarar mitt exempel.
Tack!
/Oskar  H,  Cybergymnasiet,  Malmö 2010-05-17
Svar:
Oskar! Modellen som beskrivs i fråga [13733] - elektronfördelningen är som ett suddigt moln - är mer realistisk. Elektroner kan pga Heisenbergs obestämdhetsrelation inte stängas in i kärnan. Innan man upptäckte neutronen (1932) trodde man att atomkärnorna innehöll elektroner för att ge rätt kärnladdning. Det visade sig emellertid att obestämdhetsrelationen gjorde att elektroners rörelse inte kan begränsas till kärnan. När man upptäckt neutronen och förstått att en kärna består av Z protoner och N neutroner (där A=Z+N är masstalet) så var problemet löst: det krävdes inga elektroner i kärnan så de fick hålla sig på mycket större avstånd.

Oskar kom tillbaka med följande fråga:

Jag har försökt bli klok på varför man inte kan bestämma elektroners exakta position och varför de inte kan befinna sig i atomkärnan enligt Heisenbergs obestämdhetsrelation, men jag begriper mig inte på den. Kan ni förtydliga vad det egentligen obestämdhetsprincipen säger?

Oscar! Det var det konventionella svaret du fick, och jag håller med att jag kunde varit lite tydligare. Så låt oss först räkna lite.

Obestämdhetsrelationen ges av (Heisenberg_uncertainty_principle):

DxDpx = h/4p (1)

Om vi stänger in en elektron i en atomkärna så är Dx ungefär 10-15 m. Vi får då

Dp = 0.510-34/10-15 Js/m = 0.510-19 Ns

För att få en bättre uppfattning om vad detta betyder gör vi om rörelsemängd p till energi E. Det relativistiska sambandet är (vi måste använda relativistiska samband eftersom hastigheten är hög)

E2 = (pc)2 + (mc2)2 (2)

Eftersom energin kommer att visa sig vara mycket hög så kan vi försumma elektronens viloenergi mc2 och får det enkla sambandet

E = pc (3)

(Detta är för övrigt även sambandet mellan energi och rörelsemängd för en foton.) Vi får

E = 0.510-193108 Nsm/s = 1.510-11 J = 1.510-11/(1.60210-13) MeV = 100 MeV.

För det första kan vi konstatera att det var OK att försumma vilomassan för elektronen (0.511 MeV). För det andra ser vi att detta är en mycket hög energi och vi känner ingen kraft som är stark nog att hålla elektronen fångad. Coulombkraften räcker inte till på långa vägar - den ger det lägsta tillståndet (1s) i en atom på medelavståndet 10-10 m, vilket är fem storleksordningar större än atomkärnans utsträckning.

Små system som atomer och kärnor följer alltså inte de lagar vi är vana vid i vardagen. Två olika laddade klot attraherar varandra och kommer att fastna vid varandra. Elektroner följer emellertid kvantmekanikens lagar och måste bland annat lyda Heisenbergs obestämdhetsrelation.

Det är emellertid inte helt lätt att tolka vad kvantmekaniken säger oss om naturen. Se t.ex. KvantmekanikExempel_p.C3.A5_tolkningar.

De flesta fysiker föredrar Köpenhamnstolkningen. Den sista, lite skämtsamma, "håll käft och räkna!" är inte heller så dum. Även om kvantmekaniken är svårförståelig så stämmer resultatet mycket bra med observationerna, och det är det viktigaste för en fysikalisk teori.

Länkarna 1 och 2 är svar på liknande frågor.

Man kan även resonera på ett annat sätt: om man stänger in elektronen i en låda om 210-15 m så måste våglängden vara högst 410-15 m (vågen måste ha en nod där potentialen blir oändlig). Vi får rörelsemängden

p = h/l = 6.6 10-34/4 10-15 = 2 10-19 Ns

vilket är av samma storleksordning som ovan.
Länkar: http://www.newton.dep.anl.gov/askasci/chem99/chem99283.htm  |  http://www.fnal.gov/pub/inquiring/questions/bob.html
/Peter E 2010-05-23


Vad är supersträngar?

Fråga:
Hej! Jag har tre frågor:

1. Vad är supersträngar?

2. Hur skulle universum se ut, och vad skulle vara annorlunda om vi hade <2 eller 4< rumsdimensioner?

3. Vad menas med att tyngdkraften är additiv? Innebär det att den är tio gånger så stor i en kropp med tio atomer än vad den är i en ensam atom, och 10^9 gånger starkare i en kropp med 10^9 atomer osv.?
/Axel  O,  Södermalmsskolan,  Stockholm 2010-09-08
Svar:
Axel! Detta är mycket svåra men aktuella frågor. Eftersom Stephen Hawking och Leonard Mlodinow just kommit ut med en bok, The Grand Design (länk 1), kan det vara på sin plats att sammanfatta var strängteorin står i dag. Nedanstående är till en del baserat på en artikel i Sunday Times vetenskapsbilaga Eureka från september 2010.

Strängteorin innebär att man beskriver elementarpartiklar som små endimensionella strängar. Dessa strängar vibrerar med olika frekvenser för att bilda olika partiklar. Det visade sig att det finns minst fem olika sträng-teorier med 10 rum/tid-dimensioner. Så småningom kom man fram till att alla var ekvivalenta med en teori med 11 dimensioner: M-teorin.

M-teorin

Enligt vissa teoretiker är M-teorin den ultimata TOE (Theory of Everything). Hawking ser M-teorin som ett underliggande karta som håller ihop olika teorier som beskriver alla naturlagar.

Det tycks som om ingen vet vad M-et i namnet kommer ifrån. Förutom Maybe (kanske) har jag sett Master (huvud-), Miracle (mirakulös) och Mystery (mysterium). Det tycks som om M-teorin är allt detta :-)!

I M-teorin har man alltså 11 rum/tid-dimensioner. Anledningen till att vi bara ser tre rumsdimensioner är att de övriga är kollapsade (eller kanske mer exakt, de har inte expanderat som de tre vi ser).

I M-teorin är man inte begränsad till endimensionella strängar, utan man kan ha vibrerande objekt (supersträngar) i 2 dimensioner (membran), 3 dimensioner (blobbar) och upp till 9 dimensioner.

Två fundamentala problem i dagens fysik är den spöklika obestämdheten hos kvantmekaniken (en atom kan befinna sig i flera tillstånd samtidigt) och det faktum att naturlagarna tycks vara finjusterade så att universum kunde utvecklas till ett universum som ger plats för liv - även om det bara finns på ett ställe, se diskussionen nedan.

M-teorin tillåter kanske 10500 olika universa med varierande naturlagar. Teorin tillåter, med hjälp av gravitationen, att universa skapas ur ingenting.

Universums utveckling och Guds existens

Mycket av diskussionen om Hawkings bok har handlat om behovet av en högre makt. Om man studerar universums utveckling från Big Bang till vad vi observerar i dag, visar det sig att många av naturlagarna verkar avstämda för att producera en värld där liv är möjligt. Några exempel (bland många) på denna finjustering av naturlagarna är


  1. Om den starka kärnkraften bara varit lite starkare så hade 2He varit stabilt och stjärnor hade inte kunnat bildas.
  2. Om det inte funnits ett tillstånd i 12C som precis passar till energin hos 3 a-partiklar, så hade ämnen tyngre än kol (som behövs för liv) inte kunnat bildas.
  3. Endast ett universum med 3 utvecklade rumsdimensioner tillåter stabila planetbanor och följaktligen liv, åtminstone som vi känner det.


Ovanstående egenskaper kan förklaras på ett av tre sätt


  1. Det finns en högre makt som bestämt att det skall vara så (den klassiska religiösa skapelseteorin).
  2. Det är en ytterst osannolik slump.
  3. Det finns massor av universa med olika egenskaper. Ett av dessa är vårt med de nödvändiga egenskaperna. De övriga "misslyckade" universa finns, men de innehåller inget intelligent liv som kan fundera på varför deras värld ser ut som den gör.


Hawking förespråkar punkt 3: Gud i punkt 1 behövs inte.

NÃ¥gra kommentarer

Eftersom M-teorin ännu inte kan knytas till observationer kan man ha olika åsikter om teorin:

Den är "Kejsarens nya kläder" eller pseudovetenskap av noll och intet värde. Eller Hawkings optimistiska åsikt att det kan vara den ultimata teorin som förklarar allting: "Philosophy is dead and there is no need for the God hypothesis: modern cosmology has all the answers".

Jag tror att de flesta av dagens fysiker anser att det är en lovande början och låter teoretikerna hållas ett tag till så de får en chans att komma upp med några förutsägelser som kan testas med experiment. Bilden nedan från ett föredrag av Lawrence M Krauss (se fråga [18978]) är en mindre positiv synpunkt.

Jag har en kanske naiv uppfattning att en modell eller teori skall vara behjälplig för att "förstå" ett fysikaliskt fenomen. För mig uppfyller M-teorin inte detta kriterium med sina 10500 universa. Men för all del, redan kvantmekaniken är obegriplig.

Vad gäller din sista fråga, så har jag inte sett uttrycket, men jag tror din tolkning är korrekt: helt enkelt att kraften är proportionell mot massan, F=mg.

Question Image

Länkar: http://www.amazon.co.uk/Grand-Design-Stephen-Hawking/dp/0593058291/  |  http://superstringtheory.com/
/Peter E 2010-09-13


Vilken strålning är på längre sikt den farligaste och varför?

Fråga:
Håller på med ett arbete om strålning (alfa, beta, gamma). Min fråga är: Vilken strålning är på längre sikt den farligaste och varför?
Vi blir inte riktigt eniga i vår grupp och behöver er hjälp i frågan.
/Bodil  L,  Kinna 2010-10-28
Svar:
Bodil! Jag kan förstå att ni inte kan enas - det är en svår fråga som beror på vilka aspekter man betraktar.

Det sönderfall som i normalfallet ger upphov till mest skador är utan tvekan alfa-sönderfall av radon. Figuren nedan visar orsaker till cancer (antal fall per år i Sverige). I Sverige dör drygt 20% av cancer. Uppdelningen mellan olika orsaker till cancer är emellertid mycket osäker. Diagrammet kan emellertid användas till att se den inbördes storleksordningen av olika riskfaktorer.

Vi kan se att radon orsakar av storleksordningen 500 dödsfall per år i lungcancer, se RadonHälsoproblem. Den viktigaste anledningen till farligheten är att radon är en gas som lätt tar sig in i lungorna. När radonet sedan sönderfaller gör jonisations-spåren som alfa-partiklarna ger stor skada som senare kan ge upphov till cancer.

Om man inte får i sig alfa-strålaren (se fråga [15046] för en beskrivning av vad som händer om man får i sig Po-210), så är en alfa-strålare ganska ofarlig eftersom strålningen stoppas av ett pappersark eller det yttersta hudlagret, se
fråga [12842].

Gammastrålning förekommer framför allt i samband med betastrålning. Gammastrålning har stor genomträngningsförmåga, så man får skydda sig med tjocka väggar eller avstånd (mängden strålning avtar ju som 1/r2). Gamma- och betastrålning förekommer bland annat i kärnkraftsavfall, som naturligtvis kan vara mycket farligt om det inte förvaras säkert.

Se vidare Radon och Ionizing_radiation.

Question Image

/Peter E 2010-10-28


Är det verkligen en relativistisk effekt att ett blybatteri har en spänning på 2V och inte 0.3V?

Fråga:
Hej!
I dagens tidning, UNT, nämns att elektronerna i en blyatom i ett bilbatteri måste hålla så hög fart för att inte dras in i kärnan att elektronmassan ökar relativistiskt, och det rätt mycket, och att detta medförde att energiutbytet kan vara så stort som det är.
Fråga: Är det en vanlig kinetisk energi hos elektroner som bidrar till den elektriska? Och hur sker d e t?
/Thomas  Ã,  Knivsta 2011-01-27
Svar:
Hej Thomas! Du syftar på artikeln under länk 1. Att man behöver relativistiska korrektioner vid beräkningar av atomära nivåer är inget nytt. Detta gäller särskilt de innersta skalen. Det är däremot lite förvånande att relativitetskorrektionerna har så stor påverkan på elektriska egenskaper som ju styrs av de yttre skalen. Mer om detta nedan.

Som alltid vill jag emellertid varna för modellen att elektronerna är små laddade kulor som snurrar i banor kring kärnan och riskerar falla ner i densamma, se fråga [13733] och [17237]. Verkligheten är såpass annorlunda de bilder vi kan föreställa oss eftersom vår erfarenhet kommer från den makroskopiska världen där partiklar och vågor uppför sig "normalt".

För att "förstå" atomära system löser man en ekvation, schrödingerekvationen (SE), se Schrödinger_equation. För atomer som är mer komplexa än väteatomen är det inte trivialt att lösa SE och man tvingas till approximationer och omfattande iterativa processer.

SE tar inte hänsyn till relativistiska effekter, t.ex. att en elektrons massa beror av dess hastighet (speciella relativitetsteorin). Diracekvationen (Dirac_equation) gör emellertid detta. Problemet är att den är ännu mer svårhanterlig.

Artikeln från Uppsala universitet (länk 2 är en light-version, originalartikeln är bitvis rätt svår att förstå för icke-specialister) redovisar en beräkning av energinivåerna i bly både icke-relativistiskt och relativistiskt. Man kan med den relativistiska lösningen mycket bra reproducera EMS (fråga [17476]) för ett blybatteri. Den icke-relativistiska lösningen avviker emellertid väsentligt från de c:a 2V man observerar.

För tenn (som ligger ovanför bly i det periodiska systemet och borde likna bly) är den relativistiska effekten mycket mindre, vilket medför att tennbatterier är ganska värdelösa eftersom EMS är mycket liten. Anledningen är att tenn har betydligt lägre kärnladdning än bly (50 respektive 82), vilket innebär att elektronerna rör sig långsammare i tenn.

Det visar sig från räkningarna att det är framför allt 6s nivåerna (6s är bland valens-nivåerna i bly) som påverkas av relativistiska effekter. Eftersom s motsvarar rörelsemängdsmomentet 0 har dessa elektroner en liten men dock sannolikhet att befinna sig nära atomkärnan. På grund av blys höga kärnladdning rör de sig då mycket snabbt, och relativistiska effekter blir stora. Ökningen i elektronens massa gör att orbitalen krymper och fördelningen hos elektronmolnet förskjuts in mot kärnan.

Sammanfattningsvis beror effekten på att relativistiska effekter för elektroner nära blykärnan påverkar valensnivåerna, vilka i sin tur bestämmer EMS för blybatteriet.

Jag tycker artikeln är intressant av flera skäl:

  • Att man med grundläggande kvantmekanik kan beräkna makroskopiska storheter.
  • Relativistiska effekter är inte alltid smÃ¥ och knappt mätbara korrektioner.
  • Att man kan räkna pÃ¥ molekyler och joner.


Den relativistiska kontraktionen av 6s orbitalen förklarar även varför guld glimmar gult och varför guld är så lite reaktivt: What Gives Gold that Mellow Glow?. Se fråga [14685] för fler experimentella stöd för den speciella och allmänna relatiovitetsteorin.

Slutligen kan jag inte låta bli att citera den avslutande meningen i artikeln: Finally, we note that cars start due to relativity :-).
Länkar: http://www.unt.se/uppsala/kravs-en-einstein-for-att-starta-bilen-1220168.aspx  |  http://focus.aps.org/story/v27/st2
/Peter E 2011-01-27


Kall fusion på italienska

Fråga:
Hej! Jag undrar vad du tror om den senaste rapporten om kall fusion? Vad är nytt jämfört med det som kom upp 1989?
/Arne  S,  2011-02-02
Svar:
Det finns både likheter och skillnader. Likheten är att man presenterar nyheten på en presskonferens och förbigår den normala proceduren att publicera en fullständig rapport i en refereegranskad tidskrift. Den största skillnaden är att man föreslår en helt annan typ av fusion än vätefusion, nämligen fusion mellan väte och nickel. Mer om detta nedan.

Två italienska forskare, Focardi och Rossi, har den 14 januari 2011 demonstrerat en apparat som under en timme levererat en effekt på 12 kW med en input-effekt på 400 W. Hur apparaten är konstruerad säger man inte (av patentskäl), men den innehåller nickel och väte. Se NyTekniks artikel (länk 1) och nedanstående bild på apparaten (från länk 2).

Om funktionen hos apparaten verkligen är vad man hävdar är detta utan tvekan den största uppfinning som mänskligheten någonsin åstadkommit -- den skulle utgöra en i praktiken outsinlig källa till energi. Problemet är att det är ganska säkert inte sant eftersom det skulle kräva en fundamental ändring i fysikens lagar som vi uppfattar dem i dag. Detta är mycket likt Randell Mills idéer (fråga [14237]) om ett nytt grundtillstånd i väte som kan utnyttjas som energikälla.

Uppgifter om data för demonstrationen är ganska vaga, men vi använder följande som approximationer för nedanstående överslagsberäkningar:

Tid för fortfarighetstillstånd i demonstrationen: 1 timme

Nettoeffekt (Put-Pin): 10 kW

Mängd väte förbrukat: 1 g

Flöde av vatten: 4.9 g/s

Vi antar dessutom i fortsättningen att sedan många decennier etablerade lagar i kärnfysiken gäller.

Artikeln av och Focardi och Rossi

Uppfinningen kallas energikatalysator (Energy Catalyser Boiler), men kunde även kallats evighetsmaskin. Det senare namnet kunde emellertid ställa till problem vid patentansökan :-).

Artikeln (länk 2) har refuserats i flera tidskrifter. I stället har författarna skapat en ny (webb)tidskrift kallad Journal of Nuclear Physics där ett antal märkliga artiklar publicerats.

Artikeln har flera av de i fråga [14237] listade kriterierna på pseudovetenskap. Mycket i artikeln är korrekta men triviala textboksfakta som t.ex. inledningen om bindningsenergi för atomkärnor och diskussionen om kvantmekanisk tunnling mot slutet.

Det som brister är emellertid beskrivning av apparaten. Det som i normala artiklar kallas experimentella procedurer saknas helt. Detta är helt i strid med det vetenskapliga arbetssättet (fråga [14237]): alla experimentella resultat skall kunna reproduceras. Vem som helst skall alltså kunna upprepa experimentet och få samma resultat, men detta kan man ju inte göra utan en detaljerad beskrivning.

I diskussionen mot slutet i artikeln förklaras barriärpenetreringen med någon effekt att elektron och proton kommer mycket nära varandra. Elektronen skulle då skärma protonens laddning och protonen skulle därmed inte utsättas för en repulsiv coulombbarriär. Det skulle kanske kunna bli en ny film: Honey, I Shrunk the Hydrogen Atom (jämför Honey,_I_Shrunk_the_Kids), men någon ny energikälla är det knappast.

Det finns andra märkligheter i artikeln där författarna visar att deras kunskaper i kärnfysik är mycket begränsade. I stället för att i detalj dissikera artikeln och utvärderingsrapporten (som också finns under länk 2) gör vi några enkla beräkningar.

Kemisk energi från väte

Energipotentialen från väte (den energi man maximalt kan få ut av en massenhet väte genom kemiska reaktioner) är enligt figuren i fråga [17516] drygt 140 MJ/kg. Från ett gram väte kan man alltså få ut 140 kJ. Om vi dividerar detta med den utvecklade medeleffekten får vi

(140 kJ)/(10 kJ/s) = 14 sekunder.

1 g väte skulle alltså räcka i 14 sekunder - långt från en timme som demonstrationen varade. Kemiska reaktioner med väte kan alltså inte förklara energiutvecklingen.

Strålning från fusion

Den mest förekommande nickelisotopen är 58Ni. Den dominerande fusionsreaktionen bör då vara:

1H + 58Ni -> 59Cu

Denna reaktion har Q-värdet 3.4 MeV. Det betyder att den exciterade 59Cu kärnan måste på något sätt göra sig av med 3.4 MeV för att hamna i sitt grundtillstånd. Det enda kända processen för detta är genom gammasönderfall. 59Cu är radioaktiv och sönderfaller med halveringstiden 80 s med b+-sönderfall:

59Cu -> 59Ni + e+ + v

Q-värdet för sönderfallet är 4.8 MeV. Totala utvecklade energin per reaktion är då 3.4+4.8=8.2 MeV. Detta värde är helt i linje med den maximala bindningsenergin per nukleon i figuren i fråga [1433] på drygt 8 MeV.

59Ni är mycket långlivat så vi kan bortse från det sönderfallet. Vi bortser även att en del energi försvinner ut ur systemet i form av neutriner.

Antal fusionsreaktioner som krävs per sekund för att generera 10 kW:

(10103 [J/s])/(8.2 MeV 1.610-13 [J/MeV]) = 0.81016 /s

För varje fusion med 58Ni får vi även ett sönderfall av 59Cu. Vi har alltså minst 20.81016=1.61016 gammasönderfall/s.

Aktiviteten blir 1.61016/(3.71010)=4.3105 Ci.

Detta är en enorm aktivitet. I Curie sägs att

A radiotherapy machine may have roughly 1000 Ci of a radioisotope such as cesium-137 or cobalt-60. This quantity of nuclear material can produce serious health effects with only a few minutes of exposure.


Den visade apparaten är alldeles för liten för att innehålla tillräckligt med strålskydd. Alla närvarande borde alltså ha fått en dödlig stråldos. Man har dessutom mätt med strålningsdetektorer och konstaterat att strålnivån inte överstiger bakgrundsnivån.

Ett annat problem är att om en stor andel av gammastrålningen slipper ut, så blir det för liten effekt för att skapa apparatens påstådda positiva nettoeffekt.

Strålskydd/infångande av energi

Om fusionen sker med etablerade lagar så kommer energin i
huvudsak ut i form av gamma-strålning. Låt oss se hur mycket strålskydd man behöver för att fånga in så mycket strålning att det inte är farligt att gå nära apparaten. Observera att man måste ändå stoppa det mesta av strålningen för att kunna ta tillvara energin.

Halveringstjockleken för bly för gammastrålning med energin 2-4 MeV är c:a 20 g/cm2. Med blys densitet 11 g/cm3 blir halveringstjockleken i cm

20 g/cm2/(11 g/cm3) = 2 cm

Med aktiviteten ovan på 4105 Ci och en rimlig säker nivå på 1 mCi (som en vanligt lab-preparat) får vi en absorptionsfaktor på

110-6/(4105) = 2.510-12

Vi antar vi behöver x halveringstjocklekar:

2-x = 2.510-12

(-x)log10(2) = log10(2.5) -12

(-x)0.30 = 0.40 -12 = -11.6

x = 11.6/0.3 = 39

Vi behöver alltså ett blyskydd på 392 = c:a 80 cm för att
få ett säkert strålskydd! Detta hade man uppenbarligen inte vid demonstrationen!

Energi från fusion

Antag att vi har 0.81016 fusionsreaktioner per sekund (se ovan). 1 g väte är 1 mol väte. 1 g väte innehåller 6.0221023 väteatomer. Konstanten är Avogrados tal. 1 g väte räcker då i

61023/(0.81016) = 7.5107 s = 21000 timmar. Energipotentialen i 1 g väte vid fusion är alltså mer än tillräcklig.

Demonstrationen av nettoeffekten på 10 kW

Apparaten värmer vatten från 13oC till 100oC (DT=87 K). Enligt fråga [14203] är vattens specifika vämekapacitet 4.18 J/gK. Sedan förångas vattnet (kräver 2260 J/g). Med vattenflödet 4.9 g/s får vi den utvecklade effekten

(4.9 [g/s])(4.18 [J/(gK)]87 K + 2260 [J/g]) = (1.8+11.1)103 = 12.9 kW

vilket är nära den påstådda effektutvecklingen.

Sammanfattning och slutsats

Om den uppvisade apparaten skulle fungera krävs en fullständig revision av våra kunskaper om atomkärnor. Artikeln är dessutom av pinsamt låg kvalité med många tecken på pseudovetenskap. Att artikeln refuserats i flera tidskrifter visar bara att refereesystemet fungerar bra.

Det finns tre alternativ för den s.k. energikatalysatorn:


  1. Den fungerar som beskrivet och uppfinnarna blir rika som troll (osannolikt)
  2. Man har gjort ett oavsiktligt misstag (knappast, eftersom den påstådda effekten är mycket stor)
  3. Det är ett medvetet bedrägeri för att lura till sig riskkapital (troligaste; detta är numera tyvärr ganska vanligt)


Låt oss fundera på om den utvecklade effekten på 10 kW är rimligt. En normal spisplatta utvecklar c:a 1 kW. När den varit igång en stund är det lätt att känna värmen från plattan om man står inom c:a 1 meter. Effekten 10 kW (som ju måste ta vägen någonstans) borde vara märkbar för alla som var i rummet vid demonstrationen - det borde blivit varmt som i en bastu! Inget sägs emellertid om att det blev varmt i rummet.

Vart tog energin vägen då? Lagrades i apparaten? Nej, det finns inget material med så hög specifik värmekapacitet att det skulle vara möjligt. Försöket är alltså inte enbart tvivelaktigt vad gäller våra kunskaper i kärnfysik. Det verkar även som om apparaten strider mot fysikernas heligaste lag: lagen om energins bevarande.

Man skall inte avslöja trollkarlens trick, men jag har ett förslag till lösning av mysteriet. Det sägs ingenstans, och syns ingenstans i videor och på bilder vad man gör med ångan som genereras. Om denna kondenseras inne i apparaten och släpps ut som vatten återfås ångbildningsvärmet. Enligt ovan används huvuddelen av effekten till att förånga vattnet, så återvinning skulle göra att man kan få en effektbalans utan att blanda in fusion.

Det finns många saker som tyder på att energikatalysatorn inte kan fungera som man hävdar. För mig är de viktigaste problemen avsaknaden av tydlig netto-effektutveckling och avsaknaden av gammastrålning.

Energiutveckling:

Vart tog den utvecklade energin (i första hand i form av vattenånga) vägen under demonstrationen? Kan man verkligen vara säker på att allt kylvatten förångades? Den mesta energin upptas genom ångbildningsvärmet, så det är helt avgörande att visa att allt vatten i form av vattenånga tas ut ur systemet.

Kärnfysikproblem:

I artikeln (länk 1) sägs att det är frågan om fusion mellan nickel och väte till isotoper av koppar. Man hävdar även (utan någon beskrivning av metoden) att man detekterat ett från det naturliga förhållandet avvikande värde på isotopförhållandet för kopparisotoper.

Var och en med elementära kunskaper i kärnfysik kan se ett antal problem med Rossis demonstration och beskrivning.

  1. I tabell 3 i Rossis artikel anges den totala utvecklade energin (Q-värdet) för vätefusion med 58Ni till 41.79 MeV. Detta är totalt felaktigt, det korrekta värdet är 8.2 MeV. Det senare värdet är i god överenskommelse med bindningsenergin per nukleon i detta område, se figur 1 i artikeln.

  2. Coulomb-barriären för en proton mot nickel är av storleksordningen 1 MeV. Transmissionen beräknad med etablerade kvantmekaniska metoder är nästan noll - ett faktum som även Rossi konstaterar i artikeln. Det är svårt att se hur den kemiska miljön skulle väsentligt kunna påverka kärnans Coulomb-barriär.

  3. Även om man accepterar att barriärpenetrationen inte är något problem så är det svårt att se hur den resulterande kärnan överför sin överskottsenergi till omgivningen utan gammastrålning.

  4. Det finns absolut inget skäl att den bildade radioaktiva 59Cu-kärnan skulle sönderfalla på ett helt annorlunda sätt än vad som är väl etablerat. Man borde alltså detektera gammastrålning och annihilationsstrålning.

  5. I fusionen med 58Ni bildas en stor aktivitet av 59Cu (av storleksordningen 1016 Bq, se ovan) som b+-sönderfaller till 59Ni med en halveringstid på 82 sekunder. I artikeln sägs att "No radioactivity has been found also in the Nickel residual from the process". Med tanke på den mycket höga aktivitet som måste ha producerats när energikatalysatorn kördes är detta uttalande ytterst förvånande: det borde vara lätt att verifiera produktionen av 59Cu genom att detektera gammastrålning.


Diskussion

För nästan exakt 100 år sedan (7 mars 1911) presenterade Rutherford sin modell av atomen med en mycket liten kärna (10-15 m) som innehåller nästan hela atomens massa och elektroner som rör sig omkring kärnan inom ett område på c:a 10-10 m. Sedan dess har ett stort antal experimentalister med sofistikerad utrustning och teoretiker med kraftfulla datorer studerat atomkärnans egenskaper. I dag måste man säga att vi förstår atomkärnan mycket väl. Det är svårt att tro att 100 års forskning om atomkärnan är så bristfällig som punkterna ovan indikerar.

Vad gäller tunnlingen skulle man kunna tänka sig att elektroner på något sätt skärmar barriären och släpper in protonen. Problemet med detta är att Heisenbergs obestämdhetsrelation förbjuder elektroner att vistas en längre tid i ett så litet område som atomkärnan. Denna förklaring skulle alltså på ett grundläggande sätt förändra kvantmekaniken som vi känner den.

En annan förklaring av tunnlingen som framförts (Widom-Larsen Theory Portal) är att protonen växelverkar med en elektron och förvandlas till en neutron och en neutrino (neutronen är ju neutral och har inga problem att ta sig in i kärnan):

p + e- -> n + v

Denna reaktion är fullt tillåten, men problemet är att den sker med den svaga växelverkan och har därmed en mycket liten sannolikhet. Om man vill använda ovanstående reaktion i förklaringen måste man väsentligt modifiera den väl etablerade teorin för den elektrosvaga växelverkan. Dessutom borde man vänta sig att en del av de bildade neutronerna "smiter ut". De skulle då reagera med omgivningen och ge upphov till lätt detekterbar gammastrålning.

I punkterna 3, 4 och 5 ovan är problemet att man i Rossis försök inte observerar någon gammastrålning. En förklaring som framförts är att gammastrålningen från kärnan på något (magiskt?) sätt förvandlas till värmestrålning. Detta är något som aldrig observerats och det står helt i strid med vad vi vet om elektromagnetisk strålning.

Bakgrundsmätning

Om man verkligen vill visa att energikatalysatorn fungerar borde man göra en blind bakgrundstest: Enligt Rossis artikel är vätet nödvändigt för att apparaten skall producera energi. Låt en oberoende person kontrollera väteflödet utan att konstuktörerna vet om flödet är på eller av. Kontrollera att energiproduktionen är fullständigt korrelerad med vätetillförsel.

Låt oss avsluta med ett citat från Carl Sagan: Extraordinary claims require extraordinary evidence.

Bra sammanfattning av Göran Ericsson, Uppsala universitet: Kall fusion i Italien

En uppdaterad diskussion av Peter Ekström: Kall fusion på italienska

Kjell Alekletts synpunkter och diskussionsforum (på engelska): Rossi energy catalyst – a big hoax or new physics?.

Question Image

Länkar: http://www.nyteknik.se/nyheter/energi_miljo/energi/article3073394.ece  |  http://fragelada.fysik.org/resurser/Rossi-Focardi_paper.pdf
/Peter E 2011-02-09


Vad avgör hur lång halveringstiden blir hos ett radioaktivt ämne?

Fråga:
Hej!
Vad är det som avgör hur lång halveringstiden blir hos ett radioaktivt ämne?

Tack på förhand
Negin
/Negin  Z,  2011-10-12
Svar:
Negin! Halveringstiden beror av många saker.

För det första vilken typ av sönderfall det är frågan om, se fråga [3480]. Gamma-sönderfall har normalt mycket korta halveringstider medan beta- och alfa-sönderfall har längre.

Sedan beror sönderfallshastigheten på den tillgängliga energin dvs sönderfallets Q-värde. Hög tillgänglig energi ger kort halveringstid.

Halveringstiden beror även av de ingående tillståndens spinn/paritet och vågfunktioner: stor skillnad i spinn eller vågfunktion ger lång halveringstid.

För alfa-sönderfall har man ett mycket starkt beroende av sönderfallets Q-värde, se fråga [16296].
/Peter E 2011-10-13


Vad har vi för nytta av periodiska systemet?

Grundskola_7-9: Materiens innersta-Atomer-Kärnor [18808]
Fråga:
Vad har vi för nytta av periodiska systemet, varför är det så viktigt?
/Holly  F,  SpÃ¥ngholmsskolan,  Bara 2012-11-06
Svar:
Periodiska systemet är en tabell över grundämnen/element som är uppställd efter deras kemiska och fysikaliska egenskaper, vilka varierar periodiskt med atomnumret (antalet protoner i kärnan) och styrs av elektronkonfigurationen (hur många elektroner det finns i de olika skalen).

Det periodiska systemet är ordnat så att element som står över varandra, dvs i samma kolumn, har likartad elektronstruktur. Det innebär att de minst bundna elektronerna rör sig i liknande banor. Härigenom får dessa ämnen likartade kemiska egenskaper.

Betydelsen är framför allt historisk - man hittade flera nya grundämnen genom att leta efter grundämnen som saknades i systemet. Men systemet används fortfarande eftersom det är ett utmärkt sätt att presentera grundämnena så att ämnen med liknande egenskaper hamnar i samma kolumn. Se vidare länk 1 och Periodiska_systemet.

WebElements är en mycket bra sajt för information om grundämnens egenskaper. Förutom massor av olika egenskaper för individuella grundämnen så kan man ta fram systematik med hjälp av det periodiska systemet, se t.ex. länk 2 (klicka på Thermometer i diagrammet).

Question Image

Länkar: http://www.linnaeus.uu.se/online/fysik/mikrokosmos/fyatom.html  |  http://www.webelements.com/periodicity/boiling_point/
/Peter E 2012-11-06


Bestämning av jordens ålder med Rb-Sr metoden

Fråga:
Hej Jag har en svår fysikuppgift som jag fastnat på:
Rb-87 sönderfaller till Sr-87. Procentuella andelen av Sr-87 i förhållande till rb-87 hela tiden ökar. När väl en sten bildas så är det inre av stenen helt isolerad av omgivningen och inget ämne försvinner eller tillförs.

a) Vilken typ av radioaktivt sönderfall är det?
b) Halveringstiden för Rb-87 är 48.8 miljader år.
När jorden bildades var kvoten mellan Rb.87 och Sr-87 = 0,699.
Hur gammal är jorden om förhållandet mellan de idag är 0,629?

Jag är jätte tacksam för hjälp!
/Linda  A,  komvux,  stockholm 2012-11-19
Svar:
Linda! Tanken är väl egentligen att du skall lösa uppgiften, men jag håller med om att den är mycket svår.

a) Se länk 1.

b) Vi antar att vi har x0 Rb-87 atomer när provet skapades och xT Rb-87 atomer nu. På samma sätt har vi y0 Sr-87 atomer när provet skapades och yT Sr-87 atomer nu.

Om vi kan få fram förhållandet xT/x0 kan vi räkna ut tiden T (som i bästa fall kan tolkas som jordens ålder). Vi har alltså 4 obekanta så vi behöver 3 ekvationer för att kunna räkna ut förhållandet ovan.

x0/y0 = 0.699 (givet)

xT/yT = 0.629 (givet)

yT = y0 + (x0 - xT)

(antal atomer från början plus antalet som sönderfallit)

Vi eliminerar yT och y0 och får

xT((1/0.629)+1) = x0((1/0.699)+1)

dvs

xT/x0 = 2.43/2.59 = 0.938

Sönderfallslagen ger

0.938 = xT/x0 = 2-T/T1/2

och slutligen om vi tar logaritmen av båda leden

T = 48.80.0277/log(2) = 4.49 miljarder år.

Exemplet är lite artificiellt eftersom man inte kan mäta x0/y0 direkt. I själva verket använder man sig även av den stabila isotopen Sr-86, se länk 2. Förekomsten av Sr-86 är konstant effersom den inte bildas i något långlivat sönderfall.
Länkar: http://nucleardata.nuclear.lu.se/toi/nuclide.asp?iZA=370087  |  http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/rbsrstep.html#c1
/Peter E 2012-11-19


Absorption av joniserande strålning

Fråga:
Hej!

Min fråga är hur man kan undersöka/exprimentera hur preparat som &945;-preparat, &946;-preparat och &947;-preparat avtar då man placerar ett material mellan källan och mätaren. Och med mätningar ta fram en matematisk modell som beskriver hur strålningen avtar beroende på tjockleken på materialet.

Kan ni ge några exempel på vilket preparat som är bäst att exprimentera med och vilket material som är mest lämpligt att placera mellan källan och mätaren.

Med vänliga hälsningar, Anna
/Anna  J,  Katredalsskolan,  Skara 2013-10-08
Svar:
Hej Anna!

För att få bra resultat behöver du naturligtvis även bra detektorer. Men låt oss se vilka preparat du bör välja.

b-sönderfall

Elektronerna kommer ut med varierande energi och de sprids genom slumpmässiga kollisioner i alla riktningar. Det är därför inte särskilt meningsfullt att göra absorptionmätningar med elektroner.

a-sönderfall

He-kärnor är mycket tyngre än elektroner och går i stort sett rakt fram. De har även en relativt konstant räckvidd. Eftersom a-partiklar har mycket kort räckvidd i fasta material så mäter man räckvidden i luft. Man har kommit fram till att räckvidden i cm ges av

D = 0.318 E3/2

där E är a-partikelns energi i MeV. 241Am är ett bra preparat som sänder ut a-partiklar med energin 5.638 MeV. Dessa har en räckvidd i luft av 4.3 cm.

Man kan sätta in en bit papper mellan detektorn och preparatet för att visa att alla a-partiklar absorberas.

g-sönderfall

Fotoner absorberas av fasta material enligt

I = I0 e-mx

där m är absorptionskoefficienten som varierar med absorptionsmaterialet och x är tjockleken hos absorbatorn.

Lämpliga absorbatormaterial är Al, Cu och Pb. Som preparat är 137Cs lämpligt eftersom det ger en g-energi på 0.662 MeV.

Se även laborationshandledning under länk 1. Kärndata finns under länk 2.
Länkar: http://fragelada.fysik.org/resurser/Stralning_IW.pdf  |  http://nucleardata.nuclear.lu.se/toi/
/Peter E 2013-10-09


Vilka nuklider är stabila?

Fråga:
När slutar ett ämne att sönderfalla? Är det när protoner och neutroner är lika eller kan de vara stabila fast de har olika antal protoner och neutroner.
Läser man i periodiska systemet är ju bly ett stabilt ämne men det har olika antal protoner och neutroner.
/Fredrik  H,  Nyhemsskolan,  Katrineholm 2013-11-08
Svar:
De stabila kärnorna är markerade med svart i figuren i fråga [3480]. Som synes har de stabila kärnorna ökande neutronöverskott (antal neutroner är N) med ökande kärnladdning Z. Detta förklaras bra med vätskedroppsmodellen, se fråga [19103].

Genom att derivera uttrycket för bindningsenergin i massformlen (Semi-empirical_mass_formulaThe_formula) och sätta derivatan lika med 0 får man ett uttryck för maximal bindning som funktion av A, se nedanstående bild från länk 1.

Jämförelse mellan beräknad och verklig stabilitetslinje
 A Z N Z(verklig)
10 5 5 5
20 10 10 10
40 19 21 18,20
60 27 33 28
80 35 45 34,36
100 43 57 44
150 62 88 62
200 80 120 80


Tabellen ovan visar för några masstal A (kolumn 1) det med nedanstående uttryck uträknade optimala värdet på Z (kolumn 2) och motsvarande neutrontal N. Fjärde kolumnen visar stabila kärnor för respektive masstal.

Som synes stämmer denna relativt enkla modell förvånansvärt bra!

Exempel på räkning för A=60

Z = (60(1+0.007560^(-1/3)))/(1.983+0.0151760^(2/3)) = 27.1

Question Image

Länkar: http://www.phy.uct.ac.za/courses/phy300w/np/ch1/node23.html
/Peter E 2013-11-08


Sida 28 av 31

Föregående | Nästa

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

** Frågelådan är stängd för nya frågor tills vidare **
Länkar till externa sidor kan inte garanteras bibehålla informationen som fanns vid tillfället när frågan besvarades.

Creative Commons License

Denna sida frÃ¥n NRCF är licensierad under Creative Commons: Erkännande-Ickekommersiell-Inga bearbetningar