Vill du ha ett snabbt svar - sök i databasen:

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

5 frågor / svar hittades

Fråga:
Hej!
Jag och min elev Johannes Edén undrar om det finns en enkel
beskrivning av vad ett Bose-Einstein-kondensat är...
Tar med tacksamhet emot svar på elev-nivå, resp. "lärar-nivå".
/Ã…ke  Ã,  Sundsta/Älvkullegymnasiet,  Karlstad 1998-03-09
Svar:
Det finns två olika typer av partiklar i naturen:

Dels elektroner,
protoner etc
som har halvtaligt spinn och som uppfyller Pauliprincipen. Detta
innebär att två partiklar
inte kan vara i samma kvanttillstånd. De kan inte heller vara i samma punkt. De
kallas för fermioner.

Dels finns det partiklar med heltaligt spinn (bosoner) som till exempel fotoner, alfapartiklar, He-atomer osv.
Dessa partiklar "bryr sig inte om" Pauliprincipen utan
tvärtom trivs de tillsammans och
vill helst av allt befinna sig i samma kvanttillstånd.

Det är bosoner som kan bilda ett Bose-Einstein-kondensat.
Ett liknande tillstånd
bildas av laserljus. Fotonerna stimuleras här av att alla
befinner sig i samma tillstånd (samma energi och
utbredningsriktning). I en vanlig gas av bosoner hindrar
värmerörelsen partiklarna
från att samlas i samma tillstånd. Sänker man däremot
temperaturen så inträffar
en plötslig övergång till ett Bose-Einstein-kondensat
där flertalet av partiklarna
är samlade i samma kvanttillstånd som är grundtillståndet.
De flesta av partiklarna har
då samma vågfunktion.


Förhoppningsvis kan denna beskrivning förstås av både lärare och elever!


Länk: 1997 års nobelpris i fysik tilldelades fysiker som utvecklat
tekniken att kyla gaser till mycket låga temperaturer.
På denna länk kan Du läsa om
detta: The Nobel Prize in Physics 1997. Du finner också tips på annan litteratur.

Här är ett utdrag från Wikipedias definition:

Bose–Einstein-kondensat är ett aggregationstillstånd som materia kan övergå till vid extremt låga temperaturer. Då sjunker atomernas inre energi, och därmed deras rörelsemängd, vilket leder till att osäkerheten i deras position ökar. När osäkerheten överstiger avståndet mellan bosoner (atomer med heltaligt spinn), blir atomerna ourskiljbara partiklar. De hamnar i samma kvantmekaniska grundtillstånd med samma vågfunktion. Atomernas fas blir koherent och det kan ge upphov till interferens- och diffraktionsmönster på ett sätt som är jämförbart med laserljus. (Bose–Einstein-kondensat)
/GO/lpe 2000-04-06



Fråga:
Hur är det med Heisenbergs osäkerhetsrelation vid den absoluta nollpunkten?
Kan man inte bestämma en partikels läge och hastighet?
/Dennis  E,  Rudbecksskolan,  Örebro 2000-03-16
Svar:
När man närmar sig absoluta nollpunkten, kommer atomernas lägen bli allt mer
obestämda, man kan säga att de breder ut sig, så att de överlappar varandra.
Är det fråga om bosoner (partiklar med heltaligt spin), kallar man det
Bose-Einstein kondensat. Enligt Heisenbergs obestämdhetrelation upphör partiklarnas rörelser inte helt, ens vid absoluta nollpunkten. Kolla länken nedan!
Länkar: http://keelynet.com/interact/archive/00000353.htm
/KS 2000-10-06


Hur kom Einstein på formeln E=mc2?

Fråga:
Jag har en fråga om formeln E=mc2. Jag undrar lite över hur folk (fysiker) reagerade när formeln publicerades. Var man skeptiska eller lyriska? Trodde man på att den verkligen fungerade från början?

Hur kom Einstein på formeln E=mc2? Var det en slump, eller inte?
(Henrik A)

Fungerar alltid Einsteins formel E=mc2? Vad använder man den till? (Erik D)
/Niklas  N,  Äppelviken,  Bromma 2004-02-17
Svar:
Jag har tagit mig friheten att slå ihop frågorna från Äppelviksskolan.

Det är svåra frågor ni ställer eftersom ni vill veta det historiska perspektivet. Det är en hel vetenskap som heter vetenskapshistoria, och det är vi inte experter på. Jag skall emellertid försöka mig på ett par kommentarer.

Relativitetsteorin publicerades av Einstein 1905. Här är originalversionen: Zur Elektrodynamik bewegter Körper. Artikeln är svårbegriplig för en modern fysiker, eftersom beteckningarna i formlerna är lite gammalmodiga och så är artikeln på tyska.
Vid den tiden var emellertid tyska mer vetenskapens språk än engelska, och tidens fysiker hade inga större problem att förstå artikeln.

Relativitetsteorin bygger i stort på ett antagande:
att ljushastigheten c i vakuum är konstant oberoende av hur man rör sig i förhållande till ljusstrålen. Antagandet bygger på ett experiment som utfördes av Michelson-Morley 1887: History of Special Relativity. Ovanstående artikel är mycket bra, och bör ha övertygat många fysiker. Artikeln innehåller nästan hela var vi kallar den Speciella relativitetsteorin utom det ni frågar om, E=mc2. Denna härleddes i en artikel publicerad senare under 1905: Does the Inertia of a Body Depend upon Its Energy-Content. Även denna artikel är svårläst i dag (trots att den här är översatt till engelska). I artikeln finns en länk till en engelsk översättning av Einsteins första artikel om relativitetsteorin (Zur Elektrodynamik bewegter Körper).

Länk 1 nedan är Einstein själv som förklarar vad formeln innebär. Här är en artikel som ger ett par olika härledningar: Year of Physics 2005.

Exakta mätningar som bekräftade relativitetsteorin kom betydligt senare. Inte ens nobelkommittén var imponerad: nobelpriset Einstein fick 1921 var för hans förklaring av den fotoelektriska effekten (också 1905) och inte relativitetsteorin!

Tolkning: Ekvationen E=mc2 skall tolkas så att massa och energi är ekvivalenta (utbytbara mot varandra) med "växlingskursen" c2. Eftersom c är ganska stort motsvarar även en liten massa (eller mass-skillnad) en mycket stor energi.

Bekräftelsen på E=mc2 kom först på 20/30-talet när man kunde mäta atommassor med hög precision, se fråga [12726].

Det finns många böcker om relativitetsteorin och en bra artikel i Nationalencyklopedin. Wikipedia-artiklarna Einstein och Special_relativity är också mycket bra.

Se även fråga [20460].

Question Image

Länkar: http://www.aip.org/history/einstein/voice1.htm
/Peter E 2004-02-18


Vad gör vissa ämnen supraledande?

Fråga:
Hej, jag undrar vad som gör vissa ämnen supraledande? Måste det finnas en halvmetall med? Och varför blir ämnen bara supraledande vid låga temperaturer?
Tacksam för svar!
/Johanna  L,  2014-06-10
Svar:
Wikipedia (Supraledare) definierar supraledning:

Supraledning är ett fenomen i fasta tillståndets fysik som uppträder under en viss kritisk temperatur (ofta betecknad Tc) i vissa material. Ett supraledande material karakteriseras av sin oändligt stora elektriska ledningsförmåga och av att det inte kan innehålla något magnetiskt fält i innandömet (Meissnereffekten). Fenomenet förklaras teoretiskt av att elektronerna vid tillräckligt låga temperaturer parar ihop sig till Cooper-par.


Supraledning finns vid tillräckligt låga temperaturer hos vissa metaller och även keramiska ämnen. Det finns ämnen som är supraledande vid så hög temperatur att man kan använda billigt och lättillgängligt flytande kväve som kylmedel (kokpunkt 77 K).

Supraledning är ganska komplext och det finns olika förklaringar och fenomenet är inte helt förstått, speciellt när det gäller högtemperatursupraledare. Den klassiska förklaringen är BCS-teorin (se BCS_theory).

I en vanlig ledare (typiskt en metall) sker laddningstransporten med fria elektroner, se fråga [9549]. Elektronerna kolliderar med atomerna i gittret och i en del av dessa kollisioner förlorar elektronen energi som värmer upp ledaren. Denna uppvärmning av ledaren är oftast oönskad eftersom den innebär en energiförlust (ledningsresistans).

I vissa ledare vid låg temperatur slår sig elektronerna ihop två och två med motsatt spinn (+1/2.-1/2). Man får då vad man kallar ett Cooper-par med spinnet 0. Dessa Cooper-par leder strömmen i stället för fria elektroner. På grund av kvantmekaniken är den emellertid två avgörande skillnader:

1 Eftersom ett Cooper-par har heltaligt spinn (0) är de bosoner och behöver till skillnad från fermioner (halvtaligt spinn) inte lyda pauliprincipen, se fråga [18298]. Alla Cooper-par kan då befinna sig i det lägsta tillståndet, grundtillståndet. Detta kallas Bose-Einstein-kondensat, se fråga [1136].

2 Energin i grundtillståndet är för liten för att Cooper-paren skall kunna växelverka med gittret. Detta betyder att kollisioner blir "förbjudna" och Cooper-paren kan röra sig obehindrat, det vill säga att resistansen är noll.

I figuren nedan visas resistiviteten (grön kurva) som funktion av temperaturen. Man ser att resistiviteten är exakt noll för temperaturer mindre än Tc. Den blå kurvan visar specifik värmekapacitet. Man ser att även denna påverkas vid fasövergången T=Tc.

Se även Superconductivity.

Question Image

/Peter E 2014-06-10


Vad är suprafluiditet?

Fråga:
Hej!
Jag har en fråga som handlar om suprafluiditet. Har försökt att få något svar via wikipedia men hittar inget där.
Här är frågan:
Vad är suprafluiditet? Jag vet att det är när vätskor inte har någon friktion alls, men jag undrar hur det kan komma sig. Jag skulle gärna vilja ha ett svar på kvantnivå.

Jag har tänkt på om det kan vara samma anledning som suprafluiditet (att elektroncooperparen har för låg energi för att växelverka med atomerna i gittret). Men i en vätska finns det inte fria elektroner så att de kan bilda bosoner.
Jag vet att jag är är lite ung enligt vissa för att ställa sådana frågor, men jag har intresserat mig för fysik och kvantmekanik länge och vill verkligen ha ett svar.
/Isac  M,  Katarinaskolan,  Uppsala 2016-12-13
Svar:
Jodå, det finns massor av information om suprafluiditet på webben, men för Wikipedia får du (som ofta) gå till den engelska artikeln Superfluidity.

Suprafluiditet kallas det fenomen som gör att vissa ämnen vid låga temperaturer har en fluid fas som flödar utan viskositet, så kallade "suprafluider". Ett exempel är helium-isotopen helium-4, en boson, som vid temperaturer under 2,186 kelvin (-270,964 °C) uppvisar sådana egenskaper. Suprafluiditet

Här är ett experiment med 4He:



Vid mycket låga temperaturer hamnar många av heliumatomerna i det lägsta kvantmekaniska tillståndet (grundtillståndet) Detta är möjligt eftersom 4He är en boson med heltaligt spinn, och den behöver därför inte lyda paulipricipen (se fråga [18298]). Energin hos atomerna i grundtillståndet är för låg för att spridning till ett högre tillstånd skall kunna ske. Spridning är alltså omöjlig och viskositeten blir noll.

Ännu märkligare än viskositeten noll är att supraflödande He kan ta sig över hinder, se nedanstående figur från Rollin_film. Detta kallas Onnes-effekten som uppstår genom att kapillärkrafter dominerar över tyngdkraften och viskositeten.

Question Image

/Peter E 2016-12-14


| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

** Frågelådan är stängd för nya frågor tills vidare **
Länkar till externa sidor kan inte garanteras bibehålla informationen som fanns vid tillfället när frågan besvarades.

Creative Commons License

Denna sida frÃ¥n NRCF är licensierad under Creative Commons: Erkännande-Ickekommersiell-Inga bearbetningar