Vill du ha ett snabbt svar - sök i databasen:

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

6 frågor / svar hittades

Fråga:
Kyler man ned ett ämne som Uran eller Plutonium till absoluta nollpunkten, försvinner radioaktiviteten då, eftersom jag har hört att allting står still vid den temperaturen?
/Nils  L,  ArbrÃ¥skolan,  ArbrÃ¥ 1999-02-01
Svar:
Det är molekylerna och atomerna som inte rör sig vid absoluta nollpunkten. Förhållanena inne i atomkärnan påverkas inte alls. Uran, plutonium och alla andra radioaktiva ämnen sönderfaller som vanligt.

Fundera: Vad händer med radioaktiviteten när ett ämne ingår i en kemisk förening?
/KS/lpe 1999-11-11


Grundskola_7-9: Ljud-Ljus-VÃ¥gor - absoluta nollpunkten [7401]
Fråga:
Hej!
Jag har hört att man med hjälp av en laser kan kyla ner atomer till
absoluta nollpunkten. Jag undrar därför hur en så kall laser fungerar?
/Christoffer  C,  TrÃ¥ngsundsskolan,  TrÃ¥ngsund 2001-02-06
Svar:
Det är inte lasern som är kall. Man måste ha en mycket kraftig laser
för att det ska funka. Det går ut att man på ett listigt sätt får atomerna
att absorbera och emittera fotoner, så att de kyls. Man utnyttjar här
dopplereffekten. Det skulle dra ut allt för långt att gå in på detaljerna.
Vi hänvisar i stället till Nobelstiftelsens press release för 1997 års
nobelpris i fysik: The Nobel Prize in Physics - Laureates. Den är på engelska.
/KS/lpe 2001-02-07


Fråga:
Kan man med experiment fastställa absoluta nollpunkten?
/Ylva  G,  Nosaby,  Kristianstad 2001-05-04
Svar:
Den klassiska metoden att bestämma den absoluta temperaturen är gastermometern.
Man mäter till exempel trycket vid konstant volym vid 0 oC och
100 oC. Med hjälp av allmänna gaslagen kan man räkna ut absoluta
temperaturen, och därmed absoluta nollpunkten. Detta förutätter att gasen
är en ideal gas, vilket stämmer ganska bra, men inte perfekt. Sedan finns
naturligtvis mera raffinerade metoder. När man ska mäta temperaturer vid
en miljondels grad från absoluta nollpunkten, får man använda helt andra
metoder. Se vidare About Temperature och Temperature.
/KS 2001-05-04


Vad skulle hända med en vätska som t.ex vatten om den nådde den absoluta nollpunkten?

Grundskola_7-9: Värme - absoluta nollpunkten, termodynamik [12815]
Fråga:
Vad skulle hända med en vätska som t.ex vatten om den nådde den absoluta nollpunkten?
/Tobias  P,  Klarebergsskolan,  H-Kärra 2004-02-27
Svar:
Tobias!
Enligt termodynamiken blir alla system av "rena" ämnen mer och mer ordnade ju lägre deras temperatur blir - det har att göra med att värme helt enkelt är en form av rörelseenergi. När man kyler t.ex. en vätska så att den kommer oändligt nära den absoluta nollpunkten (termodynamikens s.k. tredje lag säger att man aldrig kan nå till absolut noll!) kommer molekylerna som att ordna sig så att de formar en i det närmaste perfekt kristallstruktur.

Om man kunde zooma in på molekylerna skulle den enda rörelse man kunde iaktta vara en lätt "vibration" - all annan form av rörelse (som "translation", vilket innebär att atomerna flyttar runt eller byter plats med varandra, och "rotation" runt någon axel) har upphört eftersom det inte finns tillräckligt med energi tillgänglig.

Att vibrationen inte upphör ens vid nollpunkten har sin grund i ett kvantmekaniskt samband (populärt kallat Heisenbergs "osäkerhetsrelation"), som säger att man inte kan samtidigt exakt bestämma både läge och hastighet för en partikel. Detta innebär att vattenmolekylen har kvar en viss (mycket liten) "nollpunktsenergi".

Läs mer: Forskning kring hur olika material och atomer beter sig vid låga temperaturer är ett brett och mycket spännande forskningsfält, som omfattar allt från Bose-Einstein-kondensat till supraledning - slå upp dessa ord, och även kryoteknik, i t.ex. Nationalencyklopedin. Se också About Temperature och Temperature.

Fundera på: Hur tror du att man bär sig åt för att kyla ner något till temperaturer nära den absoluta nollpunkten? Räcker det med att åka ut i rymden, kanske, eller måste man ta till "trick" i laboratoriet?
/Margareta H/lpe 2004-02-27


Kan man ha temperaturer lägre än absoluta nollpunkten?

Fråga:
Hej!
I dag, 7/1-13, rapporterar vetenskapsradion (SR P1) att man nått temperaturer lägre än absoluta nollpunkten. Det tycks man enligt inslag i frågelådan här ha nått tidigare, så vad är det egentligen nya för 2013?
Och finns det en absolut högsta temperatur? Frågesvaren med nummer 1262, 5956 och 9718 ger inte något entydigt svar, tycker jag.
Beror alltihop på hur man definierar absolutvärdena?
/Thomas  Ã,  Knivsta 2013-01-07
Svar:
Thomas! Jag tror att forskarna spetsat till sin beskrivning (länk 1) lite grann. För normala termodynamiska system är det translationsrörelsen hos atomer/molekyler som bestämmer temperaturen. Då finns i princip ingen begränsning uppåt av temperaturen och negativa absoluta temperaturer förekommer inte.

Enkelt uttryck är temperatur ett mått på partiklars (atomer/molekyler i en gas) slumpmässiga rörelse. Vid 0 Kelvin (-273.15oC) står partiklarna stilla och oordningen upphör. Inget kan alltså vara kallare än absoluta nollpunkten. Trots detta kan absoluta temperaturer vara negativa, se nedan.

Att man med negativa temperaturer kan åstadkomma att entropilagen inte gäller och därmed få verkningsgrader som är större än 1 tror jag inte på. De försök man gjort bygger på subtila kvantmekaniska effekter som man inte har i t.ex. en motor. Det nya är att man har experimentellt visat ett system med negativ temperatur.

Detta betyder inte att rapporten är fel eller ointressant.

Låt oss börja med ett par definitioner av fysikaliska storheter:

entropi (mikroskopisk definition) (entropy, entropi)

I den mikroskopiska definitionen, som används inom statistisk mekanik, mäter entropin oordningen hos varje individuell frihetsgrad, det vill säga variationen av mikrotillstånd. Den totala entropin är summan av varje entropibidrag från respektive frihetsgrad, exempelvis vibrationsfrekvens, magnetiskt bidrag, och dylikt. Entropi betecknas ofta med bokstaven S. Termodynamikens andra huvudsats säger att naturens riktning är att öka oordningen, vilket oftast postuleras som att jämvikt uppstår då entropin uppnått sitt maximala värde.

Låt oss ta det enklast möjliga systemet som exempel: en rad med N stycken spinn 1/2 atomer som sitter på en endimensionell tråd. Vi har även ett magnetfält av styrkan B. Den enda frihetsgraden är att spinnet kan ändras mellan + och - (spinn upp och ner). Om atomernas magnetiska moment är u blir den totala energin

E = (N+ - N-)uB

där Nx är antalet atomer i respektive tillstånd.

Observera att med denna definition är E noll om vi har lika många spinn-up som spinn-ner. Det lägsta energitillståndet har vi när alla atomer har spinn-ner, E = -NuB. Detta är systemets absoluta nollpunkt. Det finns bara ett sätt att åstadkomma detta tillstånd: alla atomer har spinn-ner. Entropin S är logaritmen av antalet tillstånd, så vi får S = log(1) = 0.

Om vi nu adderar energin uB till systemet, så behöver vi ändra spinnet till upp för en partikel. Den finns N möjligheter, så entropin är S = log(N).

Om vi adderar ett kvantum energi till, får vi N(N-1)/2 möjliga subtillstånd. Vi ser alltså att entropin ökar med ökande energi, dvs temperaturen (1/T = dS/dE, se nedanstående definition av temperatur) är positiv.

Entropin kan emellertid inte öka obegränsat eftersom vi har en maximal energi +NuB med alla atomer i spinn-up tillståndet. Här finns det återigen bara ett subtillstånd, och entropin är 0. Om vi tar bort ett kvantum energi har vi en atom med spinn-ner, dvs S = log(N). För ökande energi har vi alltså i detta området en negativ temperatur 1/T=dS/dE eftersom dS är negativt.

Vi har alltså skapat ett system där entropin först växer från 0 till ett maximum (med hälften spinn-up och hälften spinn-ner). Därefter minskar entropin till 0 när alla atomer har spinn-up. Temperaturen är från början positiv och ökar till positiva oändligheten vid entropins extremvärde (dS/dE=0). Där slår temperaturen över till negativa oändligheten och fortsätter att öka till den maximala energin. Observera att området med negativ temperatur är varmare än det med positiv temperatur. Detta är helt enkelt en konsekvens av hur absoluta temperaturen definierats.

Förutsättningen att kunna tala om negativ temperatur är alltså att energin hos systemet har ett maximum. Detta är möjligt bara för vissa frihetsgrader som t.ex. spinn. Den totala entropin för ett system är summan av entropin för de olika frihetsgraderna. Om man i systemet inkluderar translationsenergi som inte har något maxvärde, så kan man inte tala om negativa temperaturer.

temperatur (temperature, temperatur)

Temperatur är en fysikalisk storhet och ett mått på det som vanligtvis uppfattas som värme och kyla. Värmeflödet är från en högre temperatur till en lägre temperatur. Vid lika temperatur är föremål i termisk jämvikt. Temperatur kan också beskrivas som den kinetiska energin hos ett ämne. D.v.s. rörelsen hos molekylerna/atomerna inom ämnet. Vid högre temperatur rör de sig mer och vid lägre temperatur mindre.

Temperaturen kontrollerar alltså flödet av värme mellan olika system, och som i alla fysikaliska system strävar naturen mot maximal entropi dvs det tillstånd som kan realiseras på flest sätt. Sambandet mellan entropi och temperatur är

1/T=dS/dE

Så länge entropin ökar med energin (dS/dE > 0) är T alltid positiv. Bara vissa frihetsgrader kan ha negativ temperatur, se exemplet ovan. Förutsättningen är att växelverkan med andra frihetsgrader är tillräckligt liten.

Se Thermodynamic_temperatureDefinition_of_thermodynamic_temperature.

Maximal temperatur: För ett normalt system av partiklar med translationsenergi finns ingen skarp övre gräns för energin, åtminstone om man betraktar "normala" temperaturer. Vi mycket höga temperaturer kommer partiklarna att kollidera och producera partikel/antipartikelpar och fotoner. Detta medför en ökning av antalet frihetsgrader och en reduktion av temperaturhöjningen. Vid tillräckligt hög temperatur stöter man på samma problem som när man försöker beskriva universum nära big bang.

Experimentet som rapporteras i länk 1 involverar inte spinn utan är cirka 100000 atomer i vakuum som kyls ned till en miljarddels K i optiska fällor som åstadkoms med laserstrålar. Dessa skapar ett optiskt gitter med atomerna regelbundet ordnade som i en kristall (se nedanstående figur från optical_lattice). Atomerna kan röra sig mellan olika positioner med tunneleffekten, men den kinetiska energin har en övre gräns. På grund av detta kan systemet uppvisa negativa temperaturer vilket även påvisats i experimentet.

Se vidare länk 2, temperatur/temperaturskalor och Absolute_hot.

Question Image

Länkar: http://www.mpg.de/6776082/negative_absolute_temperature  |  http://math.ucr.edu/home/baez/physics/ParticleAndNuclear/neg_temperature.html
/Peter E 2013-01-07


Vad är suprafluiditet?

Fråga:
Hej!
Jag har en fråga som handlar om suprafluiditet. Har försökt att få något svar via wikipedia men hittar inget där.
Här är frågan:
Vad är suprafluiditet? Jag vet att det är när vätskor inte har någon friktion alls, men jag undrar hur det kan komma sig. Jag skulle gärna vilja ha ett svar på kvantnivå.

Jag har tänkt på om det kan vara samma anledning som suprafluiditet (att elektroncooperparen har för låg energi för att växelverka med atomerna i gittret). Men i en vätska finns det inte fria elektroner så att de kan bilda bosoner.
Jag vet att jag är är lite ung enligt vissa för att ställa sådana frågor, men jag har intresserat mig för fysik och kvantmekanik länge och vill verkligen ha ett svar.
/Isac  M,  Katarinaskolan,  Uppsala 2016-12-13
Svar:
Jodå, det finns massor av information om suprafluiditet på webben, men för Wikipedia får du (som ofta) gå till den engelska artikeln Superfluidity.

Suprafluiditet kallas det fenomen som gör att vissa ämnen vid låga temperaturer har en fluid fas som flödar utan viskositet, så kallade "suprafluider". Ett exempel är helium-isotopen helium-4, en boson, som vid temperaturer under 2,186 kelvin (-270,964 °C) uppvisar sådana egenskaper. Suprafluiditet

Här är ett experiment med 4He:



Vid mycket låga temperaturer hamnar många av heliumatomerna i det lägsta kvantmekaniska tillståndet (grundtillståndet) Detta är möjligt eftersom 4He är en boson med heltaligt spinn, och den behöver därför inte lyda paulipricipen (se fråga [18298]). Energin hos atomerna i grundtillståndet är för låg för att spridning till ett högre tillstånd skall kunna ske. Spridning är alltså omöjlig och viskositeten blir noll.

Ännu märkligare än viskositeten noll är att supraflödande He kan ta sig över hinder, se nedanstående figur från Rollin_film. Detta kallas Onnes-effekten som uppstår genom att kapillärkrafter dominerar över tyngdkraften och viskositeten.

Question Image

/Peter E 2016-12-14


| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

** Frågelådan är stängd för nya frågor tills vidare **
Länkar till externa sidor kan inte garanteras bibehålla informationen som fanns vid tillfället när frågan besvarades.

Creative Commons License

Denna sida frÃ¥n NRCF är licensierad under Creative Commons: Erkännande-Ickekommersiell-Inga bearbetningar