Vill du ha ett snabbt svar - sök i databasen:

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

7 frågor / svar hittades

Gymnasium: Värme - entropi, termodynamik, tid [8019]
Fråga:
Hej alla fysiker!

I termodynamikens andra huvudsats står det att entropin hela tiden ökar,
om man inte gör något.

Kan ni ge ett bra exempel på ett "vardagsfenomen" som bevisar riktigheten
i andra huvudsatsen?

Exemplet skall helst kunna demonstreras rent praktiskt.
/Erik  M,  Komvux Uddevalla,  Uddevalla 2001-03-27
Svar:
Entropin kan i många sammanhang beskrivas som "oordning". Termodynamikens andra huvudsats
blir då att oordnigen ökar med tiden (i ett slutet system).
Vi kan alltså på det viset urskilja tidens riktning. Ett bra sätt att illustrera
detta, är att köra en film baklänges. Jag påminner mig en sekvens där
Helan och Halvan kör med en bil rakt genom en lada så att träflisorna ryker.
Kör man den baklänges, ser man en bil backa mot hålet i ladan, försvinna
in genom det samtidigt som träflisorna lyfter sig och hamnar på plats.
Ladan är hel igen. Vi inser omedelbart med våra erfarenheter att filmen körs baklänges eftersom sannolikheten att allt hamnar på rätt plants för att regenerera ladan är praktiskt taget noll.
/KS 2001-03-28


Om elekticitet är ett kretslopp, varför talar man då om energiförbrukning?

Grundskola_7-9: Energi - energikällor, termodynamik [12575]
Fråga:
Om elekticitet är ett kretslopp som ni säger, som en kedja och inte förbrukas, varför talar man då om energiförbrukning? Varför kan man inte köra ett kraftverk en gång för alla så man får mycket ström och sedan bara återanvända det hela tiden? Är det bara för att tjäna pengar?

Samma sak med batterier. Varför tar de "slut" om strömmen är ett kretslopp? Strömmen går ju från ena polen genom kretsen med lampan eller bandspelaren och sen tillbaka genom batteriets andra pol. Varför kan man inte bara vända på batteriet sen och använda det på nytt när ena polen blir tom på ström och den andra full? Men då skulle väl inte de som tillverkar batterierna tjäna pengar på det...
/Johan  A,  2003-12-27
Svar:
En bra konspirationsteori, Johan, men den är inte korrekt :-).

Det som transporterar effekten (energi/tidsenhet) är elektrisk ström, se fråga [17955]. Om en användare tar ut effekt (t.ex. i ett värmeelement eller en elektrisk motor) så måste man tillföra effekt i kraftverket för att spänningen skall vidmakthållas.

Föreställ dig el-ledningen som ett vattenledningsrör. Elverket är pumpen som behövs för att driva vattnet. Abonnenterna tar ut energi med små skovelhjul som drivs av vattnet. Men det kostar energi att driva skovelhjulen, och denna tas från vattnet som bromsas in. Så pumpen (elverket) måste hela tiden pumpa in energi för att hålla igång vattnet. En liten del av energin går åt för förluster - friktion för vattenledningen, elektriskt motstånd för el-ledningen.

Om el-ledningen varit supraledande (inget motstånd) och ingen tar ut någon effekt, så är din teori korrekt. Men vad skall man med el-ledningen då till?

Vad gäller batteriet så kan strömmen bara gå åt ena hållet av fysikaliska skäl (undantaget förstås när du laddar batteriet från en yttre energikälla). I ett batteri lagrar man alltså kemisk energi, som man kan ta ut i form av elektrisk energi.

Observera att energiförbrukning är en ofysikalisk beteckning. Vad vi har att göra med hela tiden är omvandling mellan olika former av energi, t.ex. solens värme får vatten att avdunsta och samlas som moln, det regnar och vattenmagasinen fylls, vattenmagasinets potentiella energi blir till rörelseenergi, elektrisk energi som till sist blir till värmeenergi. Ett ständigt kretslopp alltså.

Simplicio: Jamen, det var ju det jag sa. Det är ett kretslopp och elbolagen är bara ute för att lura pengar av oss...

Salviati: Ja, det kan så tyckas, men jag har utelämnat en komplikation: Termodynamik. Termodynamikens andra huvudsats säger att: Det finns ingen process vars enda resultat är att värme från en enda värmekälla helt omvandlas till mekaniskt arbete. För att kunna utnyttja en värmekälla måste vi ha möjlighet till kylning. I alla kraftverk som baseras på värme (kärnkraftverk, oljeeldade kraftverk) måste vattnet kylas efter turbinen för att skapa undertrycket som driver turbinen. Vi har alltså hela tiden förluster i kretsloppsprocessen.

Fotnot: Salviati är Galilei själv och Simplicio är en fiktiv anhängare av Aristoteles i Galileis bok Dialogue Concerning the Two Chief World Systems, 1632.
/Peter E 2003-12-30


Vad skulle hända med en vätska som t.ex vatten om den nådde den absoluta nollpunkten?

Grundskola_7-9: Värme - absoluta nollpunkten, termodynamik [12815]
Fråga:
Vad skulle hända med en vätska som t.ex vatten om den nådde den absoluta nollpunkten?
/Tobias  P,  Klarebergsskolan,  H-Kärra 2004-02-27
Svar:
Tobias!
Enligt termodynamiken blir alla system av "rena" ämnen mer och mer ordnade ju lägre deras temperatur blir - det har att göra med att värme helt enkelt är en form av rörelseenergi. När man kyler t.ex. en vätska så att den kommer oändligt nära den absoluta nollpunkten (termodynamikens s.k. tredje lag säger att man aldrig kan nå till absolut noll!) kommer molekylerna som att ordna sig så att de formar en i det närmaste perfekt kristallstruktur.

Om man kunde zooma in på molekylerna skulle den enda rörelse man kunde iaktta vara en lätt "vibration" - all annan form av rörelse (som "translation", vilket innebär att atomerna flyttar runt eller byter plats med varandra, och "rotation" runt någon axel) har upphört eftersom det inte finns tillräckligt med energi tillgänglig.

Att vibrationen inte upphör ens vid nollpunkten har sin grund i ett kvantmekaniskt samband (populärt kallat Heisenbergs "osäkerhetsrelation"), som säger att man inte kan samtidigt exakt bestämma både läge och hastighet för en partikel. Detta innebär att vattenmolekylen har kvar en viss (mycket liten) "nollpunktsenergi".

Läs mer: Forskning kring hur olika material och atomer beter sig vid låga temperaturer är ett brett och mycket spännande forskningsfält, som omfattar allt från Bose-Einstein-kondensat till supraledning - slå upp dessa ord, och även kryoteknik, i t.ex. Nationalencyklopedin. Se också About Temperature och Temperature.

Fundera på: Hur tror du att man bär sig åt för att kyla ner något till temperaturer nära den absoluta nollpunkten? Räcker det med att åka ut i rymden, kanske, eller måste man ta till "trick" i laboratoriet?
/Margareta H/lpe 2004-02-27


Om värmeinnehåll

Grundskola_7-9: Värme - antimateria, termodynamik [16650]
Fråga:
Hej,
jag håller på med ett skolarbete som har temat "värmeenergi", och har två frågor om det inte är för mycket begärt:

1. Vilken värmekapacitivitet/Cp har is?

2. Fungerar detta?:

En liter flytande vattens värmeenergi, 0 grader celsius:

Värmeenergi i J=1kg273&916;Tis värmekapacitivitet

Jag räknade inte med energin som krävs för att isen ska smälta, eftersom den inte bidrar till värmeenergin(?).

Om denna "formel" inte fungerar, hur räknar man då ut ett föremåls värmeenergi?
/Axel  K,  MariaMontessoriskolan,  Lund 2009-11-21
Svar:
Axel!

1 Den specifika värmekapaciteten för is är 2.1 kJ/kg.K. Det frigörs alltså 2.1 kJ när man sänker temperaturen en grad hos 1 kg is.

2 Nej, det är inte meningsfullt. Även om det i princip enligt termodynamikens första huvudsats (energins bevarande) finns energi att hämta ur is om man kyler ner det till absoluta nollpunkten så saknar det mening pga termodynamikens andra huvudsats: värme går från en varmare kropp till en kallare. När det gäller möjligheten att ge energi är alltså temperaturen viktig: ju högre temperatur desto högre energipotential.

En kropps värmeenenergi är alltså inget som är direkt givet, utan det beror på processen med vilken man extraherar energin. Att få energi genom att kyla is låter inte särskilt lovande. Tänk t.ex. på att det faktiskt kostar energi att frysa köttbullarna som blev över trots att du tar ut värmeenergi från dem. (Värmeenergin går till uppvärmning av huset.)

Låt oss ta ett exempel. Det extrema energiinnehållet är om man har en bit materia med massan 1 kg. Om man har tillgång till 1 kg antimateria (som i Dan Browns bok Änglar och demoner) skulle man kunna frigöra

2mc2 = 2c2 = 2(3108)2 = 18 1016 J

Detta motsvarar den energi som ett kärnkraftverk med effekten 1000 MW utvecklar under 6 år. Enda problemet är att det kostar mångdubbelt denna energi att producera ett kg antimateria :-(.

Se vidare Thermodynamics och Termodynamik.
/Peter E 2009-11-22


Frysa vatten med värmepump för uppvärmning

Fråga:
Hej. Jag fick en liten fundering. Vi har en elslinga i köksgolvet hemma. Den ger värme av direktverkande el. Nu undrar jag om jag skulle skulle "vinna energi" om jag istället för att använda energin i elslingan, satte in 2 st 10-litershinkar med vatten i frysen. Energin som ligger lagrat i vattnet borde transporteras ut i rummet och jag kan kasta ut isen på gräsmattan. Håller detta resonemang? Tack. /Peter
/Peter  N,  Skoghall 2012-02-04
Svar:
Kul fråga Peter! Det du föreslår är att använda kylskåpet som en värmepump med vatten direkt från kranen som värmereservoir.

En värmepump är en teknisk anordning som överför värme från en kall till en varm plats (Värmepump).

Enligt termodynamikens andra huvudsats, se fråga [15733], kan värme bara gå från varmt till kallt. Man kan emellertid komma ifrån detta om man på ett fiffigt sätt utför ett arbete. Detta är vad ett kylskåp gör: med hjälp av energi från en elektrisk motor "pumpas" värme från en kall reservoir (kyl/frys utrymmet) till en varm reservoir (luften bakom kylskåpet). En värmepump är konstruerad precis som ett kylskåp, enda skillnaden är att det är den varma reservoiren som är den intressanta.

Ditt förslag är alltså att använda hinkar med vatten som din kalla reservoir. I normala fall använder en värmepump t.ex. uteluften eller marken i trädgården som kall reservoir.

Vi kan för att definiera storheter rita en schematisk figur på processen, se nedan. Vi har en kall reservoir (blå), en varm reservoir (röd) och en motor som utför arbete. Q är värmemängder och W är den till motorn tillförda (elektriska) energin.

Den optimala processen är vad som kallas Carnot-processen, så vi antar vi har en förlusfri sådan.

Värmefaktorn (COP, Coefficient Of Performance) för en värmepump definieras som

COP(värmepump) = (det vi vill ha)/kostnaden = QH/W

På analogt sätt kan vi definiera kylfaktorn för en kylmaskin

COP(kylmaskin) = (det vi vill ha)/kostnaden = QC/W

Men totala energin bevaras så

QH = QC + W

dvs

COP(värmepump) = QH/(QH-QC)

För Carnot-processen gäller (Coefficient_of_performance) att entropin dQ/T är konstant varav följer

QC/TC = QH/TH

dvs

COP(värmepump) = TH/(TH-TC)

Låt oss för enkelhets skull anta vi utgår från nollgradigt vatten och att den varma reservoiren är 50o. Vi får då värmefaktorn

COP(värmepump) = (50+273)/(50) = 6.46

Smältvärmet för vatten är (fråga [14203]) 333 kJ/kg. Låt oss räkna på 1 kg (=1 liter) vatten:

QC = 333 kJ

COP = 6.46 = QH/(QH-333)

6.46 QH -3336.46 = QH

QH = 394 kJ

W = QH - QC = 61 kJ

Så med en insats på 61 kJ (elmotorn) får vi ut 394 kJ! Det låter som trolleri, men är faktiskt sant.

Låt oss kontrollera den totala entropin i varma och kalla reservoirerna

S = QH/TH + (-QC)/TC

S = 394/(50+273) - 333/273 = 0.00

vilket är som det skall vara för en Carnot-process.

Nu kan vi räkna ut om din idé är realistisk. Låt oss anta du behöver 5 kW 50 gradigt vatten för uppvämning. 1 kg vatten räcker då

394[kJ]/5[kJ/s] = 78.8 s

Du behöver alltså ställa in en tiolitershink med vatten ungefär var tionde minut! Och det är med en ideal process, en verklig process skulle ha betydligt mindre COP, i bästa fall 30-50% av den ideala.

Question Image

/Peter E 2012-02-02


Om termodynamikens andra huvudsats

Fråga:
Hej. Dök upp en "rolig samling elevsvar" på nätet med bl a en fysikfråga och ett kul svar. Vill dock gärna veta det riktiga svaret för att kunna gå vidare i livet.
Frågan löd ungefär: världens hav innehåller värme. En ingenjör designade en oceanångare som skulle utvinna värme vid T2=10 grader C och avge värme ut i atmosfären vid T1=20 grader C. Ingenjören fick sparken. Varför?
/Ingela  O,  2014-11-29
Svar:
Ja, det kan man fråga sig! Som det är formulerat är det inget annat än en värmepump. Med en värmepump kan man genom att utföra arbete överföra mer värme än tillfört arbete från en kall reservoar till en varm, se fråga [18487] och [18257].

Värmefaktorn (COP, Coefficient Of Performance) för en värmepump ges för en ideal process (Carnot) av

COP(värmepump) = TH/(TH-TC)

Om man sedan vill använda värmen från den varma reservoaren för en motor (värmemotor) som kan driva oceanångaren så är verkningsgraden

h = (TH-TC)/TH

(se fråga [15817])

Om vi nu seriekopplar värmepumpen och motorn får vi den totala verkningsgraden

COPh = 1.

Detta betyder att vi får ut precis den effekt vi puttar in. Observera att vi hela tiden talar om ideala processer utan förluster. I verkligheten vore ovanstående framdrivningsmetod vara mycket olönsam.

Se fråga [15733] för mer om termodynamikens huvudsatser och evighetsmaskiner. Länk 1 innehåller en ganska enkel framställning om termodynamikens andra huvudsats:

So the second law, in words, is just the statement that these two things are impossible. that is:

1. It is impossible for heat to move spontaneously from a cold body to a hot body with no other result.

2. It is impossible to convert heat quantitatively into work with no other result.

The latter statement is sometimes phrased: "It is impossible to make a perpetual motion machine of the second kind."
(A perpetual motion machine of the second kind is a machine that converts heat into work without doing anything else. Imagine an ocean liner that scoops up liquid water out of the ocean, pulls the heat out of the water and uses it to power the ship, and dumps the left-over ice cubes out the back of the ship.)

Note that a perpetual motion machine of the second kind would not violate the first law. Energy would be conserved because any heat extracted would be converted into work.

The second law is why automobiles have radiators. Someone might ask why we throw away all that energy that dissipates from the radiator. Why not capture the energy and use it do decrease our gas mileage? The answer is that if you don't dissipate the heat the engine burns up, as you would quickly find out if you bypassed the radiator with a hose or if you drained the coolant from the radiator.


Termodynamik är läran om energi, dess omvandling mellan olika former och särskilt samspelet mellan värme och arbete. Den klassiska termodynamiken studerar kopplingen mellan makroskopiska egenskaper som temperatur, volym och tryck hos system samt hur dessa påverkas och förändras genom termodynamiska processer. (Termodynamik)

Länk 2 innehåller övningar/svar i termodynamik.
Länkar: http://www.chem.arizona.edu/~salzmanr/480a/480ants/2ndlaw1/2ndlaw1.html  |  https://www.mech.kth.se/courses/5C1216/luntor/problems.pdf
/Peter E 2014-11-29


Varför är det kallare på utsidan av solen?

Fråga:
Varför är det kallare på utsidan av solen (vid kromosfären)?
/ellinor  u,  björnekullaskolan,  åstorp 2017-04-18
Svar:
Låt oss först se hur solen är uppbyggd.

I solens centrum är temperaturen c:a 15 miljoner K. Det är här solen producerar sin energi genom kärnreaktioner, se fråga [12547]. Energin transporteras sedan med strålning (inre delarna) och konvektion. (yttre delarna). Transporten med strålning är emellertid en mycket långsam process eftersom fotonerna hela tiden kolliderar med joner och försvinner i en slumpmässig riktning - nästan lika sannolikt inåt som utåt.

Man väntar sig att temperaturen i solen skall minska när man går längre ut från energikällan i centrum. Detta är helt analogt med att en järnstång med ena ändan i en eld är varmare nära elden. Det är värmeledningsförmågan som bestämmer hur varm den andra ändan är. Hög värmeledningsförmåga medför att även den icke uppvärmda ändan blir varm.

Fotosfären är solytan vi ser när vi observerar solen i synligt ljus. Innanför fotosfären är solen inte transparent (ogenomskinlig, hög opacitet) för ljus.


Kromosfären - är så tunn att den är transparent. En utsänd foton har alltså en hygglig chans att ta sig ut. Detta gör att kylningen blir mer effektiv, så temperaturen blir lägre än vid fotosfären. Kromosfären är det kallaste lagret hos solen. Lägsta temperaturen, c:a 4100 K, är c:a 500 km ovanför fotosfären. Kromosfären är det tunna rödaktiga lagret utanför månskivan i bilden nedan av en solförmörkelse.

Koronan är mycket tunn, endast synlig vid totala solförmörkelser. Temperaturen är ett par miljoner K.

Koronans höga temperatur är fortfarande något av ett mysterium. Den kan inte värmas upp direkt genom strålning eftersom det skulle strida mot temodynamikens andra huvudsats att värme kan inte spontant transporteras från en kallare till en varmare kropp, se fråga [15733]). Det måste vara något annat som värmer koronan, t.ex. ljudvågor eller magnetfält, se CoronaCoronal_heating_problem. Denna "accelerator" skulle alltså, analogt med en värmepump, värma upp koronan och orsaka solvinden som vi på jorden kan observera som norrsken, se fråga [19745].

Mellan kromosfären och koronan finns ett tunt övergångsskikt där temperaturen ökar med höjden.

Se vidare länk 1, 2 och SunStructure.

Question Image

Länkar: http://www.astronomy.ohio-state.edu/~ryden/ast162_1/notes3.html  |  https://www.nasa.gov/mission_pages/iris/multimedia/layerzoo.html
/Peter E 2017-04-18


| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

** Frågelådan är stängd för nya frågor tills vidare **
Länkar till externa sidor kan inte garanteras bibehålla informationen som fanns vid tillfället när frågan besvarades.

Creative Commons License

Denna sida från NRCF är licensierad under Creative Commons: Erkännande-Ickekommersiell-Inga bearbetningar