Vill du ha ett snabbt svar - sök i databasen:

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

13 frågor / svar hittades

Gymnasium: Värme - solens utveckling [542]
Fråga:
Hur skulle jordens temperatur ändras med tiden, om solen plötsligt slutade lysa?
1997-03-20
Svar:
Detta är en hypotetisk fråga. Solen kommer att dö om ca 4 miljarder år men den kommer då att svälla och bli en s k röd jättestjärna. Den kommer alltså inte att slockna likt en glödlampa som släcks. Men låt oss leka med tanken att solen slocknar plötsligt. Då skulle temperaturen i atmosfären sjunka snabbt. För att få en uppfattningen av hur snabbt detta sker kan du fundera på: Tänk Hur mycket sjunker temparaturen under natten? På några dagar skulle säkert temperaturen vara under - 50 grader C. Inne i jorden skulle däremot inte temperaturen sjunka så väldigt mycket. Det tar ju månader för tjälen att komma ner någon meter i jorden. Dessutom så uppvärms jorden hela tiden i sitt inre genom radioaktiva sönderfall.

Se fråga [3446] för ett mer sannolik utveckling.
/GO/lpe 1997-03-20


Solenergi

Grundskola_7-9: Energi - energikällor, ljus, solenergi [1129]
Fråga:
Kan man använda solenergi över hela världen? Vilka olika typer av solfångare finns det? Vad kostar det?
/Per  L,  Näsbydalskolan,  Täby 1998-03-09
Svar:
Solenergi är energi som ytterst härrör från kärnprocesser i solens inre och som når oss i form av solstrålning. Se solens energiproduktion om hur denna energi produceras.

Solljusets betydelse för såväl naturliga processer på jorden som mänsklig verksamhet visar sig i att nästan all energiomsättning på jorden härrör från solen. Det enda andra energiutbytet alstras av radioaktiva ämnen, som driver kärnkraftverk (kärnenergi) samt svarar för en stor del av värmen i jordens innandöme (geotermisk energi).

Detta betyder att ca 95 % av världens energianvändning direkt eller indirekt utgörs av solenergi, till största delen lagrad i en eller annan form. Hit hör således de fossila bränslena, som utgör solenergi som lagrades för hundratals miljoner år sedan, biomassa som lagrats i år eller tiotals år i form av träd och annan växtlighet, samt jordvärme, där sommarens solinstrålning används för att producera varmvatten även på vintern. Vattenkraft är också lagrad solenergi - solinstrålningen skapar moln som ger regn i höglänta områden. Även vind- och vågenergi är ytterst solenergi eftersom rörelsen i atmosfär/hav även drivs av solinstrålningen. Dessa energislag behandlas vanligtvis dock för sig. När vi i dagligt tal talar om solenergi avser vi vanligen den direkta omvandling av solstrålningen till el och värme som sker i solceller och solfångare eller i stor skala i solkraftverk.

För en uthållig framtid behöver vi energisystem som endast bygger på förnybara energikällor solstrålning, vatten i rörelse, vind, biomassa och geotermisk energi. I ett sådant system spelar även väte en viktig roll som bränsle. Väte kan framställas med hjälp av sol-el eller på fotokemisk väg.

Solenergin är en enorm resurs. Solen utstrålar årligen cirka 3.51018 TWh varav 7.5108 TWh når jordytan. Av detta omvandlas knappt 0.06% i fotosyntesen och tas till vara av jordens växtlighet som energi i biomassa. Även den del av solenergin som omvandlas till vindar är mindre än en procent. Potentialen för direkt solenergianvändning
är därför stor jämfört med dessa båda andra förnybara
energikällor.

Världens kända och ekonomiskt utvinnbara tillgångar
av olja och gas, liksom uranreserverna för
dagens typ av kärnreaktorer, motsvarar den solinstrålning
som når jordens yta under bara några
dagar. Reserverna av kol motsvarar några veckors
solinstrålning.

Den energi som solljuset innehåller kan direkt användas på i princip tre olika sätt:

1 Solvärme. Man använder solfångare som värmer vatten (eller luft) som används för att ge varmvatten eller för att värma bostäder. Detta är vanligt i medelhavsområdet där det finns mycket solsken. Eftersom behovet av uppvärmning av bostäder är begränsat används solfångarna där mest för att producera varmvatten, se nedanstående figur.

2 Solceller. I dessa celler omvandlas solenergin direkt till elektrisk energi. Många solceller brukar monteras tillsammans och bildar solpaneler. Sådana används bland annat för att förse satelliter med energi. De används även för andra tillämpningar där kabeldragning skulle vara alltför dyrt. Se vidare länk 1. Om elektriciteten inte används omedelbart måste den lagras i batterier. En nackdel med solceller är att de inte fungerar på natten och fungerar dåligt när det är molnigt. En solcell är alltså konstruerad precis som en lysdiod (se fråga [1677]) men körs så att säga baklänges så att ljus in ger ström ut.

3 Solkraftverk. Man koncentrerar solstrålningen med hjälp av speglar på en vattenfylld behållare. Värmen får vattnet att koka, och ångan leds till en turbin som driver en generator som ger elektrisk ström. En sådan här anläggning kräver mycket solljus så den lämpar sig bäst för öknar i varma områden.

Priset på solenergi är fortfarande inte konkurrenskraftigt jämfört med andra energiformer utom för speciella tillämpningar.

Ta reda på. Hur är en vanlig solfångare konstruerad?

Projekt. Konstruera en enkel solfångare som kan användas för att ge varmvatten till duschen i ett fritidshus.

Se vidare Solar_power, Solar_energy
, Solenergi, solenergi och Solcell.

Question Image

Länkar: http://science.howstuffworks.com/solar-cell.htm
/Peter E 1998-11-11


Grundskola_4-6: Universum-Solen-Planeterna - avstånd till, solen [1340]
Fråga:
Hur långt är det till solen? Hur räknar man ut det?

/erik  n,  Stockaryds skola,  Stockaryd 1998-05-07
Svar:
Det är ungefär 150 miljoner km till solen. Ett annat sätt att uttrycka avståndet är att säga att det tar drygt 8 minuter för ljuset att gå från solen till jorden. Avståndet varierar något med årstiden. Det är faktiskt kortast i januari!

Man kan beräkna avståndet till solen genom att mäta vinklar i den triangel som bildas av solen, jorden och månen när månen är precis halv.

Den förste som försökte räkna ut avståndet till solen på detta sätt var Aristarchos som levde i Grekland år 310 - 230 före Kristus. Han beräknade avståndet till månen genom att studera månen vid månförmörkelse. Månen går då genom jordens skugga som bildar en strut i rymden.

Uppgift Rita en triangel med solen, månen och jorden i hörnen. Låt vinkeln vid månen vara 90 grader och vid jorden 87 grader. Hur mycket längre är det till solen än till månen? Undersök detta genom att mäta i triangeln.

Den triangeln Du ritade är den som Aristarchos använde. Tyvärr mätte han fel så det stämmer dåligt.

Se länk 1 för detaljer om hur Aristarchos mätte!

Slå upp: Hur mycket längre är det till solen än till månen?

Senare, när man upptäckt Keplers lagar kunde man bestämma avståndet till solen mycket bättre. Keplers tredje lag säger att

P2/a3 = konstant

där a är en planets medelavstånd från solen och P dess period (omloppstid). Eftersom perioderna är lätta att mäta har man direkt de relativa medelavstånden till solen för alla planeter. Man kan sedan bestämma skalan genom att mäta ett avstånd till en närbelägen planet, t.ex. Venus.

Klassiskt gjorde man detta genom att mäta de små skillnader i vinkel som planeten uppvisade från olika punkter på jorden. I dag kan man mäta avstånden mycket mer exakt helt enkelt genom att studsa en radarsignal på planeten och mäta fördröjningen.

Se länk 2 för mer om att mäta avstånd i solsystemet.
Länkar: http://en.wikipedia.org/wiki/Aristarchus_On_the_Sizes_and_Distances  |  http://en.wikipedia.org/wiki/Astronomical_unit
/GO/lpe 1998-11-09


Fråga:
Hur föds respektive dör stjärnor?
/Elin  N,  Värmdö Gymnasium,  Gustavsberg 1999-05-11
Svar:
Stjärnor föds då gasmoln trycks ihop, till exempel när gasmoln kolliderar. Sedan drar gravitationen ihop gasklumparna till stjärnor. Det finns tre typer av stabila himlakroppar: Planeter, vita dvärgstjärnor och neutronstjärnor. En stjärna måste alltså sluta i ett av dessa tillstånd, eller också vika sig ut ur vårt universum i ett svart hål.

I en mycket liten "stjärna" startar aldrig kärnreaktionerna, och den kommer sluta som en kall, planetlik himlakropp en så kallad brun dvärg. Denna undre gräns för stjärnors massa är ungefär 0.08 solmassor.

Det finns även en övre gräns för stjärnors massa på c:a 100 solmassor. Om molnet som komprimeras har en massa överstigande detta gränsvärde startar kärnreaktionerna innan stjärnan är färdigbildad så att en del av gasmolnet blåses bort av strålningstrycket.

När kärnreaktionerna upphör i en stjärna som solen, kastas en del av höljet av, det bildas en planetarisk nebulosa. Stjärnan krymper ihop till en vit dvärg. En kall vit dvärg är faktiskt svart!

En mycket stor stjärna slutar som supernova, kvar blir en neutronstjärna ett svart hål eller ingenting alls.

En detaljerad beskrivning av stjärnutveckling finns i Wikipedia-artikeln Stellar_evolution (på engelska). En stjärna med solens massa utvecklas enligt figuren nedan. Först ungefär 10 miljarder år med mycket långsamt ökande ljusstyrka (solen är för närvarande halvvägs i denna fas). Sedan en tid som röd jättestjärna, och till sist en vit dvärgstjärna.

Question Image

/KS/lpe 1999-10-11


Var kommer solens energi ifrån?

Fråga:
Jag undrar hur kan det komma sig att solen har funnits i miljarder år utan att dess strålning varken har minskat eller ökat? dvs nästan allt behöver energi att fungera eller har en vis funktion som sedan brukar lägga av efter några år och det behövs en arbetsfunktion för att den ska fungera men solen det är ingen som driver den eller har skapat den hur kan den då fungera i miljarder år utan någons påverkan?
/fatma  z,  Apelgårdskolan,  Malmö 2002-09-07
Svar:
Solen befinner sig nu i ett skede med långsam utveckling (huvudserien). Då sker energiproduktionen genom "förbränning" av väte till helium i solens centrum. Detta har pågått i 5 miljarder år och kommer fortsätta i 5 miljarder år till. Därefter sker en rad drastiska förändringar innan solen slutar som en vit dvärgstjärna. För detta se nedan.

"Förbränningen" av väte till helium är inte vanlig kemisk förbränning som förbränning av kol till koldioxid genom tillsats av syre. Kemisk förbränning ger bara energimängder på ungefär eV (en mycket liten energienhet). Med en sådan förbränning skulle solen bara kunna lysa några tusen år.

En annan möjlig källa till solens energiutveckling som man funderade på i slutet av 1800-talet är gravitationsenergi. Solen skulle kunna frigöra energi genom att dra sig samman. Inte heller denna källa räcker till för att förklara energiutvecklingen under flera miljarder år.

För att förklara solens energiutveckling måste man ta till kärnfysik. Denna kunskap utvecklades under de första åren av 1900-talet. Den reaktion som ger solen energi sker vid c:a 15 miljoner grader i solens centrum och är mycket förenklat (i själva verket går reaktionen i flera steg, se bilden nedan och länk 1, Energiproduktion för detaljer):

4 1H --> 4He + energi

En väteatom har massan 1.007825032 massenheter (u) och en heliumatom har massan 4.002603250 u. Fyra väteatomer väger då
4.031300128 u. Skillnaden 0.028696878 u motsvarar en energi på 0.028696878931.5 MeV = 26.7 MeV, dvs 26700000 eV, allså en miljon gånger mer än vad vanlig förbränning ger. Det är alltså denna stora förvandling av massa till energi (E=mc2) som är solens energikälla. Den relativa energiutvecklingen blir 0.028696878/4.031300128 = 0.71%, dvs 0.71% av massan väte omvandlas till energi.

Energin som frigörs i solens centrum transporteras till solytan med konvektion och strålning. Temperaturen vid solytan är c:a 6000 grader och vid den temperaturen sänds det ut temperaturstrålning med maximum intensitet i synligt ljus, se fråga [12409].

En stjärna som är lite tyngre än solen kan mot slutet av sin utveckling även börja förbränna helium till kol:

3 4He --> 12C + Q

där Q är den utvecklade energin per reaktion:

Q = 3m(4He) - m(12C) = 34.002603 - 12.000000 = 0.007809 massenheter = 0.007809931.5 MeV = 7.274 MeV

Den relativa energiutvecklingen blir 0.007809/12 = 0.065%, dvs 0.065% av massan helium omvandlas till energi.

Att vätet räcker i c:a 5 miljarder år till betyder inte att livet kan finnas så länge.
Allteftersom heliumhalten i solens centrum ökar, ökar också
solstrålningen. Om 1 miljard är den 10 % högre än i dag. Det låter kanske inte så mycket, men det kommer leda till en skenande växthuseffekt i jordatmosfären, där sluttillståndet liknar förhållandet på vår grannplanet Venus. Där är temperaturen på ytan 450 oC, atmosfären består av kolsyra med ett tryck av 100 atmosfärer och molnen består av svavelsyra. Inget vatten finns nu på Venus. Under sådana förhållanden kan inget liv finnas.

Det är alltså naturlagarna som är så funtade att en stjärna av solens typ har en mycket lång period av långsam utveckling. Om utvecklingen hade varit mycket snabbare hade knappast liv hunnit utvecklas. Vi har idag mycket god kunskap om vad som sker i en stjärna som solen och hur den utvecklas.

Om du vill ha mer information, kolla sajten What will happen to the Solar System in the future. Den är på engelska.
Det finns också en artikel oktobernumret 2002 av Sky and Telescope. Den är också på engelska.

Question Image

Länkar: http://kasper.pixe.lth.se/NuclearPhysics/slideShow/f1/
/KS/lpe 2002-09-13


Solens massa minskar med 4 miljoner ton varje sekund. Kan du förklara det?

Fråga:
hejsan :-). Jag är lite av en nybörjare inom fysiken men jag har på min fritid fifflat på en liten uträkning på hur mycket solen kommer generera i energi tills alla väteatomer är omvandlade. Nu satt jag och läste på er sida och såg en uträkning på hur mycket en atom genererar genom fusion. detta räknades i MeV? Kan jag få en förklaring till detta det hade gjort min uträkning lättare..
/Kenny  j,  Galären,  Karlskrona 2005-01-28
Svar:
Fyra väteatomer bildar en heliumatom under frigörande av 26.7 MeV, se fråga [10658].

Vad behöver vi mer för att räkna ut svaret på din fråga? Vi behöver solens massa och andelen väte (låt oss säga när solen skapades). Solens massa är 19891001024 kg (Planetary Fact Sheets). Andelen väte i den unga solen är lite mer osäkert - det beror på om gasen som bildade solen kom direkt från big bang eller om den redan varit i en heliumproducerande stjärna. Låt oss anta 75% väte som en rimlig gissning. Vi har alltså 0.7519891001024=1.51030 kg väte. Molvikten är 1 g, så vi har 1.51030/0.001=1.51033 mol väte.

Avogadros konstant (antalet atomer per mol av ett ämne) är 6.0221023 mol-1 (Physical Reference Data). Vi kan räkna ut antalet väteatomer som

1.510336.0221023=9.01056

Fyra väteatomer gav 26.7 MeV så totala energiutvecklingen om vi transformerar allt väte till helium blir

26.79.01056/4 = 601056 MeV

Om vi förvandlar till J får vi energin

6010561061.60210-19 = 971043 J

Detta är alltså solens energipotential om allt väte kan förvandlas till helium. Som sådant är detta värde kanske inte så intressant, men låt oss räkna ut hur länge solen skulle kunna lysa med sin nuvarande styrka. Solens effekt (luninositet) är enligt Planetary Fact Sheets 384.61024 J/s (W). Maximala åldern blir då

971043/(384.61024) = 0.251017 sekunder =
= 0.251017/(606024365.24) = 80109 år = 80 Ga = 80 miljarder år

Nu är det emellertid en våldsam överskattning att allt befintligt väte förvandlas till helium. En rimligare uppskattning är 10%, och då skulle solens maximala livslängd vara c:a 8 miljarder år, vilket är nära de 10 miljarder år man får fram med mer detaljerade beräkningar.

Solens massförlust

Om den producerade energin per sekund är 384.61024 J (se ovan) hur mycket lättare blir solen då varje sekund. Vi använder E = mc2 och får massförlusten per sekund m till

m = E/c2 = 384.61024/(3108)2 = 4270 000 000 kg

vilket är ungefär 4 miljoner ton! Denna massa försvinner naturligtvis inte - totala massan/energin måste bevaras - utan den sprids ut i universum av solstrålningen. Om strålningen träffar något - t.ex. en planet - kommer massan hos planeten att öka lite, lite grann.
Länkar: http://fragelada.fysik.org/index.asp?keyword=stj%E4rnors+utveckling  |  http://www.linnaeus.uu.se/online/fysik/makrokosmos/solcykeln.html
/Peter E 2005-01-29


Varför har vi årstider?

Fråga:
Alla planeter som har en lutning har årstider. Men borde inte själva årstiderna bero på att ett område får olika mängd energi ifrån solen beroende på vart i året dom är. Och jag undrar också om det är möjligt att räkna ut hur mycket energy en plats får som är X° från ekvatorn, och planeten lutar Y°. är det möjligt?
/zelos  j,  rudbeck,  örebro 2005-03-30
Svar:
Jo, primärt beror årstiderna på att solenergin sprids ut på olika stora ytor beroende på vinkeln mellan jordytans plan och riktningen till solen, se figuren nedan. Vi kan även uttrycka det så att instrålningen (effekten hos inkommande strålning) beror på hur högt solen står på himlen. Dessutom påverkas naturligtvis instrålningen av att dagens längd varierar. En ytterligare effekt som påverkar temperaturen är jordytans albedo (reflektionsförmåga). Is/snö har högt albedo och tederar alltså att sänka temperaturen.

Eftersom man har utbyte av värme mellan olika delar av jorden (havsströmmar och vindar) blir det i själva verket mycket mer komplicerat att beräkna temperaturen vid en viss breddgrad för en given tid på året.

Om man placerar en yta på en kvadratmeter vinkelrätt mot solen utanför jordatmosfären kommer ytan att motta effekten 1370 W.
Detta är vad man kallar solarkonstanten (1370 W/m2). Om vinkeln mellan ytan och riktningen till solen är i, så kommer effekten per kvadratmeter bli 1370sini, dvs uppvärmningen blir mindre ju mindre i blir.

Tillägg om solarkonstanten

Man kan beräkna solarkonstanten från solens utvecklade effekt (luminositet) P (för detta värde och jordbanans radie R se Planetary Fact Sheets):

solarkonstanten = P/(4pR2)

Uttrycket i nämnaren är ytan av ett klot med jordbanans radie. Med insatta värden får vi

solarkonstanten = 384.61024/(4p(149.6109)2) = 1368 W/m2.

Anmärkning: I själva verket har man bestämt solarkonstanten och från denna räknat ut solens utvecklade effekt.

Se fråga [16846] hur man uppskattar jordens medeltemperatur från solarkonstanten. I länk 1 uppskattas solens utstrålade effekt med hjälp av Stefan Boltzmans lag.

Se vidare solarkonstanten och Solar_constant.

Question Image

Länkar: http://www-vaxten.slu.se/amnesingang/Naturvet/ovningar/solarkonst.htm
/Peter E 2005-03-31


Hur fungerar selektiva absorbenter i solfångare?

Fråga:
I termiska solfångare finns s.k. selektiva absorbenter. Dessa sätter de vanliga formlerna för svartkroppsstrålning och för absorbtion och reflektion ur spel. Hur har man lyckats med denna bedrift. Kan man skapa en sådan yta med de resurser som finns i en ordinär gymnasiefysiksal? Om möjligt önskas ett utförligt svar eller hänvisning till litteraturen.
/Anders  K,  Sollefteå 2006-11-08
Svar:
Nej, selektiva absorbenter sätter inte några naturlagar ur spel! Selektiva absorbenter innebär att ytskiktet på solfångaren behandlats med ett ytskikt som skall ge hög absorption av solstrålning och låg emittans av värmestrålning.

Kirchhoffs strålningslag säger att absorpionsförmågan är proportionell mot emissionsförmågan vid en viss våglängd. Solens yttemperatur är c:a 6000 grader, och den mesta energin i solstrålningen ligger i synligt ljus 400-700 nm. Det är alltså i detta område man vill ha maximal absorptionsförmåga hos en solfångare. Normalt innehåller en solfångare vatten som värmebärare, så temperaturen är maximalt 100 grader. Vid denna temperatur ligger maximum hos temperaturstrålningen vid mycket längre våglängder - i infrarött (se fråga 12793).

Med Blackbody Radiation Applet kan man uppskatta maximum i energifördelningen för olika temperaturer. För 6000 K ligger maximum vid 500 nm och vid 350 K (c:a 80oC) vid 8000 nm.

Även naturen utnyttjar denna selektiva absorption i växthuseffekten. Solljuset går obehindrat igenom atmosfären och värmer upp jordytan. Värmestrålningen från jordytan hindras att försvinna ut i rymden av växthusgaser - framför allt vattenånga och koldioxid. Utan denna värmande effekt skulle jorden vara c:a 35 grader kallare i medeltemperatur än vad den är.

Se vidare länk 1, solenergi, temperaturstrålning och Plancks strålningslag.
Länkar: http://www.iva.se/upload/Verksamhet/Projekt/Energiframsyn/El%20och%20V%C3%A4rme%20komplett3.pdf
/Peter E 2006-11-08


Skulle det vara rimligt att ersätta Barsebäck 1 med solceller?

Grundskola_7-9: Energi - solcell, solenergi [15117]
Fråga:
Hej!
Jag och min kompis jobbar om solenergi och vi har en fråga:
Skulle det vara rimligt att ersätta Barsebäck 1 med solenergi, alltså solfångare och solceller?
Och hur många solfångare och solceller skulle man behöva för att kunna ersätta Barsebäck 1?
/kadija  s,  fäladsgården,  lund 2007-01-29
Svar:
Hej Kadija och kompis!

Låt oss försöka göra en grov uppskattning. Barsebäck 1 hade en elektrisk effekt på c:a 600 MW. Det är alltså detta vi vill ersätta. Låt oss anta att Barsebäck var igång hela tiden - det var det normalt utom vid korta revisioner på sommaren.

Effekten hos solstrålningen utanför atmosfären är c:a 1400 W/m2, se solarkonstanten. Låt oss anta att effekten halveras genom absorption i atmosfären och att solen skiner 1/4 av tiden (optimistiskt). Vi är då nere i en effektiv effekt på 1400/8=175 W/m2. Med en effektivitet hos solcellerna på 15% är medeleffekten nere på 0.15175=26 W/m2.

För att producera en medeleffekt på 600 MW fordras 600106/26=23000000 m2 solceller. Det blir 23 km2 solceller! Dessutom har vi problemet att solen inte skiner när vi behöver mest effekt, t.ex. kalla vinternätter. Så solceller som producerar elektricitet är inget bra alternativ för Sverige. Möjligen kan vi i en framtid när solcellerna blir billigare sätta upp dem i öknar och producera vätgas som energibärare. Vindenergi är för Sverige ett mycket mer lovande alternativ även om även dessa inte alltid producerar hög effekt när det behövs. Sverige har emellertid en mycket stor fördel i förhållande till många andra länder: vi har en stor bas av vattenkraft och kärnenergi. Sol och vind, som är lite opålitligt vad gäller tillgänglighet, kan då ändå vara ett mycket viktigt komplement som inte producerar koldioxid.

Se vidare Solel, Vanliga frågor om solceller och Solar_energy.
/Peter E 2007-01-29


Hur fungerar solceller?

Grundskola_7-9: Energi - solcell, solenergi [16133]
Fråga:
Hej! Jag skriver ett arbete i skolan om solceller. När jag har letat information om hur solcellerna fungerar så står det först och främst att solcellen polariseras när den träffas av solljus så att framsidan blir negativt laddad och baksidan positivt laddad. Min fråga är då hur detta fungerar? Vad menar man med polariseras och hur polariseras solcellen enbart av solljuset?
/My  S,  österslätt,  Karlshamn 2009-04-27
Svar:
Hej My! För att förstå detta ordentligt måste man förstå halvledare och p-n övergångar (dioder). En bra förklaring på engelska finns på länk 1. Photovoltaic_cell, Photovoltaics och Solar_cell är lite mer avancerade.

Svenska Wikipedia (SolcellHur_en_solcell_fungerar) säger:
En solcell är en typ av fotodiod. Solcellen består av två skikt: P-skikt och N-skikt. Det vanligaste ämnet i solcellen är kisel som har fyra valenselektroner. N-skiktet är sedan dopat med ett ämne med fem valenselektroner, exempelvis fosfor, och p-skiktet är dopat med ett ämne med tre valenselektroner, exempelvis bor. Alltså fattas det elektroner i p-skiktet, medan det blir extra elektroner i n-skiktet. Elektronkoncentrationerna är alltså olika på ömse sidor om kontaktskiktet. Diffusion leder då till att elektroner i n-skiktet vandrar över till p-skiktet. Det n-dopade skiktet blir positivt laddat, och det p-dopade skiktet bli negativt laddat, med ett starkt elektriskt fält däremellan. I mörker finns här inga fria elektroner.

Men kommer det en foton från solljuset ger den ifrån sig sin energi till elektronen och om fotonen har tillräcklig energi kommer elektronen att exciteras. När elektronen hamnar i det elektriska fältet mellan skikten, sveps den till det positivt laddade n-skiktet, där den kan ledas ut i en yttre krets (elledning).

Solceller tappar i verkningsgrad när temperaturen stiger. Det har visat sig att det är förhållandevis enkelt att använda passiv kylning och därmed minska förlusterna när temperaturen stiger.


De inkommande ljusfotonerna avlämnar alltså sin energi genom att lyfta en elektron från valensbandet (där elektronerna är bundna till en viss atom) till ledningsbandet (där elektronerna är fria att röra sig i hela kristallen.

Bilden nedan från Wikimedia Commons visar 14 MW Nellis Solar Power Plant som är Nordamerikas största fotovoltaiska anläggning och ligger i Nellis Air Force Base i Nevada. Panelerna styrs så att de alltid är vinkelräta mot solen.

Question Image

Länkar: http://science.howstuffworks.com/solar-cell.htm  |  http://news.mit.edu/2016/hot-new-solar-cell-0523
/Peter E 2009-04-27


Sida 1 av 2

| Nästa

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

** Frågelådan är stängd för nya frågor tills vidare **
Länkar till externa sidor kan inte garanteras bibehålla informationen som fanns vid tillfället när frågan besvarades.

Creative Commons License

Denna sida från NRCF är licensierad under Creative Commons: Erkännande-Ickekommersiell-Inga bearbetningar