Vill du ha ett snabbt svar - sök i databasen:

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

6 frågor / svar hittades

Solenergi

Grundskola_7-9: Energi - energikällor, ljus, solenergi [1129]
Fråga:
Kan man använda solenergi över hela världen? Vilka olika typer av solfångare finns det? Vad kostar det?
/Per  L,  Näsbydalskolan,  Täby 1998-03-09
Svar:
Solenergi är energi som ytterst härrör från kärnprocesser i solens inre och som når oss i form av solstrålning. Se solens energiproduktion om hur denna energi produceras.

Solljusets betydelse för såväl naturliga processer på jorden som mänsklig verksamhet visar sig i att nästan all energiomsättning på jorden härrör från solen. Det enda andra energiutbytet alstras av radioaktiva ämnen, som driver kärnkraftverk (kärnenergi) samt svarar för en stor del av värmen i jordens innandöme (geotermisk energi).

Detta betyder att ca 95 % av världens energianvändning direkt eller indirekt utgörs av solenergi, till största delen lagrad i en eller annan form. Hit hör således de fossila bränslena, som utgör solenergi som lagrades för hundratals miljoner år sedan, biomassa som lagrats i år eller tiotals år i form av träd och annan växtlighet, samt jordvärme, där sommarens solinstrålning används för att producera varmvatten även på vintern. Vattenkraft är också lagrad solenergi - solinstrålningen skapar moln som ger regn i höglänta områden. Även vind- och vågenergi är ytterst solenergi eftersom rörelsen i atmosfär/hav även drivs av solinstrålningen. Dessa energislag behandlas vanligtvis dock för sig. När vi i dagligt tal talar om solenergi avser vi vanligen den direkta omvandling av solstrålningen till el och värme som sker i solceller och solfångare eller i stor skala i solkraftverk.

För en uthållig framtid behöver vi energisystem som endast bygger på förnybara energikällor solstrålning, vatten i rörelse, vind, biomassa och geotermisk energi. I ett sådant system spelar även väte en viktig roll som bränsle. Väte kan framställas med hjälp av sol-el eller på fotokemisk väg.

Solenergin är en enorm resurs. Solen utstrålar årligen cirka 3.51018 TWh varav 7.5108 TWh når jordytan. Av detta omvandlas knappt 0.06% i fotosyntesen och tas till vara av jordens växtlighet som energi i biomassa. Även den del av solenergin som omvandlas till vindar är mindre än en procent. Potentialen för direkt solenergianvändning
är därför stor jämfört med dessa båda andra förnybara
energikällor.

Världens kända och ekonomiskt utvinnbara tillgångar
av olja och gas, liksom uranreserverna för
dagens typ av kärnreaktorer, motsvarar den solinstrålning
som når jordens yta under bara några
dagar. Reserverna av kol motsvarar några veckors
solinstrålning.

Den energi som solljuset innehåller kan direkt användas på i princip tre olika sätt:

1 Solvärme. Man använder solfångare som värmer vatten (eller luft) som används för att ge varmvatten eller för att värma bostäder. Detta är vanligt i medelhavsområdet där det finns mycket solsken. Eftersom behovet av uppvärmning av bostäder är begränsat används solfångarna där mest för att producera varmvatten, se nedanstående figur.

2 Solceller. I dessa celler omvandlas solenergin direkt till elektrisk energi. Många solceller brukar monteras tillsammans och bildar solpaneler. Sådana används bland annat för att förse satelliter med energi. De används även för andra tillämpningar där kabeldragning skulle vara alltför dyrt. Se vidare länk 1. Om elektriciteten inte används omedelbart måste den lagras i batterier. En nackdel med solceller är att de inte fungerar på natten och fungerar dåligt när det är molnigt. En solcell är alltså konstruerad precis som en lysdiod (se fråga [1677]) men körs så att säga baklänges så att ljus in ger ström ut.

3 Solkraftverk. Man koncentrerar solstrålningen med hjälp av speglar på en vattenfylld behållare. Värmen får vattnet att koka, och ångan leds till en turbin som driver en generator som ger elektrisk ström. En sådan här anläggning kräver mycket solljus så den lämpar sig bäst för öknar i varma områden.

Priset på solenergi är fortfarande inte konkurrenskraftigt jämfört med andra energiformer utom för speciella tillämpningar.

Ta reda på. Hur är en vanlig solfångare konstruerad?

Projekt. Konstruera en enkel solfångare som kan användas för att ge varmvatten till duschen i ett fritidshus.

Se vidare Solar_power, Solar_energy
, Solenergi, solenergi och Solcell.

Question Image

Länkar: http://science.howstuffworks.com/solar-cell.htm
/Peter E 1998-11-11


Varför har vi årstider?

Fråga:
Alla planeter som har en lutning har årstider. Men borde inte själva årstiderna bero på att ett område får olika mängd energi ifrån solen beroende på vart i året dom är. Och jag undrar också om det är möjligt att räkna ut hur mycket energy en plats får som är X° från ekvatorn, och planeten lutar Y°. är det möjligt?
/zelos  j,  rudbeck,  örebro 2005-03-30
Svar:
Jo, primärt beror årstiderna på att solenergin sprids ut på olika stora ytor beroende på vinkeln mellan jordytans plan och riktningen till solen, se figuren nedan. Vi kan även uttrycka det så att instrålningen (effekten hos inkommande strålning) beror på hur högt solen står på himlen. Dessutom påverkas naturligtvis instrålningen av att dagens längd varierar. En ytterligare effekt som påverkar temperaturen är jordytans albedo (reflektionsförmåga). Is/snö har högt albedo och tederar alltså att sänka temperaturen.

Eftersom man har utbyte av värme mellan olika delar av jorden (havsströmmar och vindar) blir det i själva verket mycket mer komplicerat att beräkna temperaturen vid en viss breddgrad för en given tid på året.

Om man placerar en yta på en kvadratmeter vinkelrätt mot solen utanför jordatmosfären kommer ytan att motta effekten 1370 W.
Detta är vad man kallar solarkonstanten (1370 W/m2). Om vinkeln mellan ytan och riktningen till solen är i, så kommer effekten per kvadratmeter bli 1370sini, dvs uppvärmningen blir mindre ju mindre i blir.

Tillägg om solarkonstanten

Man kan beräkna solarkonstanten från solens utvecklade effekt (luminositet) P (för detta värde och jordbanans radie R se Planetary Fact Sheets):

solarkonstanten = P/(4pR2)

Uttrycket i nämnaren är ytan av ett klot med jordbanans radie. Med insatta värden får vi

solarkonstanten = 384.61024/(4p(149.6109)2) = 1368 W/m2.

Anmärkning: I själva verket har man bestämt solarkonstanten och från denna räknat ut solens utvecklade effekt.

Se fråga [16846] hur man uppskattar jordens medeltemperatur från solarkonstanten. I länk 1 uppskattas solens utstrålade effekt med hjälp av Stefan Boltzmans lag.

Se vidare solarkonstanten och Solar_constant.

Question Image

Länkar: http://www-vaxten.slu.se/amnesingang/Naturvet/ovningar/solarkonst.htm
/Peter E 2005-03-31


Hur fungerar selektiva absorbenter i solfångare?

Fråga:
I termiska solfångare finns s.k. selektiva absorbenter. Dessa sätter de vanliga formlerna för svartkroppsstrålning och för absorbtion och reflektion ur spel. Hur har man lyckats med denna bedrift. Kan man skapa en sådan yta med de resurser som finns i en ordinär gymnasiefysiksal? Om möjligt önskas ett utförligt svar eller hänvisning till litteraturen.
/Anders  K,  Sollefteå 2006-11-08
Svar:
Nej, selektiva absorbenter sätter inte några naturlagar ur spel! Selektiva absorbenter innebär att ytskiktet på solfångaren behandlats med ett ytskikt som skall ge hög absorption av solstrålning och låg emittans av värmestrålning.

Kirchhoffs strålningslag säger att absorpionsförmågan är proportionell mot emissionsförmågan vid en viss våglängd. Solens yttemperatur är c:a 6000 grader, och den mesta energin i solstrålningen ligger i synligt ljus 400-700 nm. Det är alltså i detta område man vill ha maximal absorptionsförmåga hos en solfångare. Normalt innehåller en solfångare vatten som värmebärare, så temperaturen är maximalt 100 grader. Vid denna temperatur ligger maximum hos temperaturstrålningen vid mycket längre våglängder - i infrarött (se fråga 12793).

Med Blackbody Radiation Applet kan man uppskatta maximum i energifördelningen för olika temperaturer. För 6000 K ligger maximum vid 500 nm och vid 350 K (c:a 80oC) vid 8000 nm.

Även naturen utnyttjar denna selektiva absorption i växthuseffekten. Solljuset går obehindrat igenom atmosfären och värmer upp jordytan. Värmestrålningen från jordytan hindras att försvinna ut i rymden av växthusgaser - framför allt vattenånga och koldioxid. Utan denna värmande effekt skulle jorden vara c:a 35 grader kallare i medeltemperatur än vad den är.

Se vidare länk 1, solenergi, temperaturstrålning och Plancks strålningslag.
Länkar: http://www.iva.se/upload/Verksamhet/Projekt/Energiframsyn/El%20och%20V%C3%A4rme%20komplett3.pdf
/Peter E 2006-11-08


Skulle det vara rimligt att ersätta Barsebäck 1 med solceller?

Grundskola_7-9: Energi - solcell, solenergi [15117]
Fråga:
Hej!
Jag och min kompis jobbar om solenergi och vi har en fråga:
Skulle det vara rimligt att ersätta Barsebäck 1 med solenergi, alltså solfångare och solceller?
Och hur många solfångare och solceller skulle man behöva för att kunna ersätta Barsebäck 1?
/kadija  s,  fäladsgården,  lund 2007-01-29
Svar:
Hej Kadija och kompis!

Låt oss försöka göra en grov uppskattning. Barsebäck 1 hade en elektrisk effekt på c:a 600 MW. Det är alltså detta vi vill ersätta. Låt oss anta att Barsebäck var igång hela tiden - det var det normalt utom vid korta revisioner på sommaren.

Effekten hos solstrålningen utanför atmosfären är c:a 1400 W/m2, se solarkonstanten. Låt oss anta att effekten halveras genom absorption i atmosfären och att solen skiner 1/4 av tiden (optimistiskt). Vi är då nere i en effektiv effekt på 1400/8=175 W/m2. Med en effektivitet hos solcellerna på 15% är medeleffekten nere på 0.15175=26 W/m2.

För att producera en medeleffekt på 600 MW fordras 600106/26=23000000 m2 solceller. Det blir 23 km2 solceller! Dessutom har vi problemet att solen inte skiner när vi behöver mest effekt, t.ex. kalla vinternätter. Så solceller som producerar elektricitet är inget bra alternativ för Sverige. Möjligen kan vi i en framtid när solcellerna blir billigare sätta upp dem i öknar och producera vätgas som energibärare. Vindenergi är för Sverige ett mycket mer lovande alternativ även om även dessa inte alltid producerar hög effekt när det behövs. Sverige har emellertid en mycket stor fördel i förhållande till många andra länder: vi har en stor bas av vattenkraft och kärnenergi. Sol och vind, som är lite opålitligt vad gäller tillgänglighet, kan då ändå vara ett mycket viktigt komplement som inte producerar koldioxid.

Se vidare Solel, Vanliga frågor om solceller och Solar_energy.
/Peter E 2007-01-29


Hur fungerar solceller?

Grundskola_7-9: Energi - solcell, solenergi [16133]
Fråga:
Hej! Jag skriver ett arbete i skolan om solceller. När jag har letat information om hur solcellerna fungerar så står det först och främst att solcellen polariseras när den träffas av solljus så att framsidan blir negativt laddad och baksidan positivt laddad. Min fråga är då hur detta fungerar? Vad menar man med polariseras och hur polariseras solcellen enbart av solljuset?
/My  S,  österslätt,  Karlshamn 2009-04-27
Svar:
Hej My! För att förstå detta ordentligt måste man förstå halvledare och p-n övergångar (dioder). En bra förklaring på engelska finns på länk 1. Photovoltaic_cell, Photovoltaics och Solar_cell är lite mer avancerade.

Svenska Wikipedia (SolcellHur_en_solcell_fungerar) säger:
En solcell är en typ av fotodiod. Solcellen består av två skikt: P-skikt och N-skikt. Det vanligaste ämnet i solcellen är kisel som har fyra valenselektroner. N-skiktet är sedan dopat med ett ämne med fem valenselektroner, exempelvis fosfor, och p-skiktet är dopat med ett ämne med tre valenselektroner, exempelvis bor. Alltså fattas det elektroner i p-skiktet, medan det blir extra elektroner i n-skiktet. Elektronkoncentrationerna är alltså olika på ömse sidor om kontaktskiktet. Diffusion leder då till att elektroner i n-skiktet vandrar över till p-skiktet. Det n-dopade skiktet blir positivt laddat, och det p-dopade skiktet bli negativt laddat, med ett starkt elektriskt fält däremellan. I mörker finns här inga fria elektroner.

Men kommer det en foton från solljuset ger den ifrån sig sin energi till elektronen och om fotonen har tillräcklig energi kommer elektronen att exciteras. När elektronen hamnar i det elektriska fältet mellan skikten, sveps den till det positivt laddade n-skiktet, där den kan ledas ut i en yttre krets (elledning).

Solceller tappar i verkningsgrad när temperaturen stiger. Det har visat sig att det är förhållandevis enkelt att använda passiv kylning och därmed minska förlusterna när temperaturen stiger.


De inkommande ljusfotonerna avlämnar alltså sin energi genom att lyfta en elektron från valensbandet (där elektronerna är bundna till en viss atom) till ledningsbandet (där elektronerna är fria att röra sig i hela kristallen.

Bilden nedan från Wikimedia Commons visar 14 MW Nellis Solar Power Plant som är Nordamerikas största fotovoltaiska anläggning och ligger i Nellis Air Force Base i Nevada. Panelerna styrs så att de alltid är vinkelräta mot solen.

Question Image

Länkar: http://science.howstuffworks.com/solar-cell.htm  |  http://news.mit.edu/2016/hot-new-solar-cell-0523
/Peter E 2009-04-27


Försök med solceller

Gymnasium: Energi - solcell, solenergi [20185]
Fråga:
Hej!
Jag skriver om solcell och jag har fått från skolan och en energimätare också. Jag lagt den utan solen flera gånger och jag får siffror också på energimätare men jag förstår inte hur ska jag räkna? Hur ska jag veta att hur mycket energi har jag fått på en dag eller på en 1 timme? Snällt av dig om du svara mig. En fråga till du har skrivit allt om solceller, jag tänkte använda den sida som en källa. Jobbar du med solceller?

MVH
Shogofa Sarwari
/Shogofa  S,  Bergagymnasiet,  Eslöv 2016-04-04
Svar:
Hej Shogofa! Du kan använda dig av bara solcell och energimätare även om det vore mer intressant att även inkludera en last, dvs en komponent som gör något nyttigt. Detta skulle kunna vara ett motstånd (då har du ett värmeelement) eller en liten likströmsmotor (t.ex. en fläkt).

Sedan är det upp till dig vad du vill göra. Du kan t.ex. studera hur effektiviteten varierar med instrålningen eller så kan du optimera (hitta bästa värdet) på effektiviteten genom att variera motståndet. Videon nedan visar det enklaste försöket där man mäter effekt utan separat last.



Mer dokumentation finns under länk 1 och i fråga [1129]. Länk 1 innehåller även länkar till andra dokument om solceller.

Länk 2 innehåller en utmärkt, utökad och mer detaljerad beskrivning (på engelska) av videon ovan från Paul Doherty på Exploratorium i San Francisco, se http://www.exploratorium.edu/

För att se variationen under dagen kan du läsa av effekten en gång i timmen. En energimätare visar även totala energin, och den kan du använda för att få fram energi/dag.

Du får gärna hänvisa till svar i frågelådan, men som alltid skall du ange källan. Nej, jag har ingen praktisk erfarenhet av solceller. Jag är kärnfysiker.
Länkar: http://www.reuk.co.uk/Measuring-the-Power-of-A-Solar-Panel.htm  |  http://fragelada.fysik.org/resurser/ExploreSolarCells.pdf
/Peter E 2016-04-05


| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

** Frågelådan är stängd för nya frågor tills vidare **
Länkar till externa sidor kan inte garanteras bibehålla informationen som fanns vid tillfället när frågan besvarades.

Creative Commons License

Denna sida från NRCF är licensierad under Creative Commons: Erkännande-Ickekommersiell-Inga bearbetningar