Vill du ha ett snabbt svar - sök i databasen:

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

41 frågor / svar hittades

Grundskola_7-9: Värme - in-/ut-, meteorologi, strålning, vardagsfysik [7130]
Fråga:
Hej! Varför behöver man inte skrapa rutorna på bilen när den står inne i carporten på natten? Det är ju nästan lika kallt (=också minusgrader) där som det är utomhus?
/Martin  T,  Fagrabäcksskolan,  Växjö 2001-01-12
Svar:
Vi förutsätter att det är klart väder. Taket är varmare än natthimlen. Det kommer alltså mer värmestrålning från
taket än från himlen. Om du mäter glasrutans temperatur i de två fallen, finner du att den är lägre under bar himmel eftersom nettoutstrålningen (strålning ut - strålning in) blir större.

Alla vet att det är det kallare när det är klart än när det är molnigt? Samma anledning - mindre strålning in eftersom den högre atmosfären är kallare! Om vi dessutom tar hänsyn till att en molnfri atmosfär har lite materia som strålar, kan man säga att natthimlens temperatur är 2.7 K - temperaturen hos den kosmiska bakgrundsstrålningen!

Samma effekt gör att snön smälter snabbare under ett träd än utanför - området nära trädet är varmare.
/KS/lpe 2001-01-12


Grundskola_1-3: Elektricitet-Magnetism - faror med, strålning [8968]
Fråga:
Är det farligt att bo jämte stora elledningar?
Många på en gata jämte en tågledningarna fick cancer.
Berodde det på elen? Kor får inte lika många barn heller har jag hört?
/Amanda  L,  Smedstorp,  Smedstorp 2001-10-25
Svar:
Du kan ju läsa vad Strålsäkerhetsmyndigheten tycker om saken, se länk 1.
Länkar: http://www.stralsakerhetsmyndigheten.se/allmanhet/Magnetfalt--tradlos-teknik/Magnetfalt/
/KS 2001-10-29


Fråga:
Hur kommer det sig att en svart yta avger mer värme än en ljus?
(Jag vet att det har med svartkroppsstrålning att göra men hittar ingen förklaringsmodell som fungerar, det är lättare att förstå varför en svart yta absorberar ljus bra.)
/Mikael  L,  Sannerudsskolan,  Kil 2001-12-10
Svar:
I härledningen av Stefan–Boltzmanns lag (Stefan–Boltzmann_law) om strålningen från en yta från Plancks strålningslag ingår en konstant som kan kallas spektral emissivitet e(l). Den är normalt en funktion av våglängden hos strålningen.
Den har värdet 1 för en svart yta och 0 för en perfekt speglande yta.

Absorptionsförmågan hos en kropp beskrivs av den spektrala absorptansen a(l).

Kirchhoffs strålningslag (Kirchhoff's_law_of_thermal_radiation) säger att dessa konstanter är lika:

  e(l) = a(l)

Lagen säger alltså att en god absorbator, en svart och matt yta, även strålar ut värmestrålning effektivt, medan en blank yta strålar ut mindre effektivt, se fråga [14368].

I Kirchhoff's_law_of_thermal_radiationTheory förs ett (ganska komplicerat) resonemang som visar att Kirchhoffs lag måste gälla. Härledbarheten har diskuterats i 150 år, men lagen är emellertid väl etablerad experimentellt.

Länk 1 är en mycket detaljerad diskussion om härledbarheten hos Kirchhoffs strålningslag: Experimenting theory:
The proofs of Kirchhoff's radiation law
before and after Planck
.
Länkar: http://www.mzwtg.mwn.tum.de/fileadmin/w00bmt/www/Arbeitspapiere/Schirrmacher_2001_1.pdf
/Peter E 2001-12-20


Fråga:
Den s k kosmiska bakgrundsstrålningen finns ju hela tiden närvarande.
Enligt forskare m fl är denna strålning en rest från Big Bang.
Hur kan då strålningen fortfarande finnas kvar - den borde ju ha varit
en puls som sedan länge passerat förbi vår nuvarande plats i universum.
Om strålningen fortfarande finns kvar måste det ju finnas något som
fortfarande ger upphov till den, dvs en källa. Hur förklarar man detta?
/Bengt  I,  Sven Eriksson,  BorÃ¥s 2002-03-17
Svar:
Bakgrundsstrålningen finns kvar och den kommer alltid finnas kvar.
Den sändes inte ut från någon bestämd plats. Den uppkom i hela universum,
överallt.
Den deltar i universums expansion. Vad som händer är att temperaturen
sjunker med tiden. I dag är temperaturen 3 K. Den sändes ut vid en epok
då rödförskjutningen var z = 1000. Det innebär att temperaturen då
var 3000 K. Det var då som den joniserade vätgasen rekombinerade och
blev en neutral vätgas. Universum blev plötsligt genomskinligt.
Det hände när universum var ungefär 400000 år gammalt. När vi studerar
bakgrundsstrålningen är det ett mycket ungt universum vi ser.
Det är faktiskt själva källan vi ser. Då fanns
varken stjärnor eller galaxer.

För att kunna hantera detta rätt måste man använda relativitetsteori.
/KS 2002-03-18


Hur gammalt är universum?

Fråga:
Eftersom all materia härstammar från bigbang (även vi) hur är det då möjligt att man kan se ljuset från 300.000 år efter big-bang (Ca 15 miljarder år sen). Jag menar vi själva var ju med vid "explosionen" borde inte då ljuset från Big-Bang ha hunnit långt förbi oss (under dom 10 miljarder år det tog förrän vi populerade jorden) och fortsatt ut i universum?
/emil  Ã,  pargas svenska gymnasium,  Pargas ,Finland 2003-05-08
Svar:
Big Bang inträffade inte i någon särskild punkt, utan överallt.
Vi sitter inne i universum, och måste beskriva det under detta villkor. Universum kan inte betraktas utifrån. Relativitetsteorin tillåter inte detta, och relativitetsteorin är ett måste i detta sammanhang. Det enda vettiga måttet på det synliga universums storlek är att multiplicera universums ålder med ljushastigheten. Idag är då det synliga universum 13.7 miljarder ljusår.

Tittar vi allt längre ut i rymden, tittar vi också tillbaka i tiden. Det universum vi ser är alltså allt mindre ju längre ut vi tittar. Tittar vi så långt att det motsvarar en rödförskjutning på 1000, ser vi den kosmiska bakgrundsstrålningen, som då hade en temperatur på 3000 K. Nu har den sjunkit till 3 K. Universum var då 1000 gånger mindre än idag. Det var ungefär 400000 år efter Big Bang.

Genom att undersöka ojämnheterna i den kosmiska bakgrundsstrålningen kan man utforska ännu tidigare epoker. Det ser numera ut som att de största strukturerna vi idag känner i universum (100 - 500 miljoner ljusår) har sitt ursprung i slumpmässiga kvantfluktuationer när universum var 10-32 s gammalt. Vårt synliga universum var då stort som en golfboll ungefär.

Se vidare sajten för satellitexperimentet WMAP: Wilkinson Microwave Anisotropy Probe (WMAP). I detta experiment har man mätt temperaturen hos den kosmiska bakgrundsstrålningen i olika riktningar och bland annat bestämt universums ålder till 13.7 miljarder år. Tolkningen av data från WMAP är ganska komplex och innehåller många paramerar man kan bestämma, se bilden nedan från länk 1. Universums ålder t0 finns strax över mitten i högra kolumnen. Tiden tdec när strålningen frikopplades från materien är som synes mer exakt 379000 år.

21st Century Science innehåller bra föreläsningsanteckningar bland annat om Big Bang. Studierna av bakgrundsstrålningen belönades med 2006 års nobelpris i fysik till John C. Mather och George F. Smoot, se länk 2.

Mer information om bakgrundsstrålningen: Cosmic_Background_Radiation.

Question Image

Länkar: http://www.fas.org/irp/imint/docs/rst/Sect20/A9.html  |  http://nobelprize.org/nobel_prizes/physics/laureates/2006/press-sv.html
/KS/lpe 2003-12-21


Hur kan man härleda Plancks strålningslag?

Fråga:
Hur kan man härleda plancks strålningslag med hjälp av fysiken från fysik A kursen eller åtminstone så att vi som bara läst fysik B i ett halvår förstår det.
/Niclas  B,  Stockholm 2003-11-11
Svar:
Det kan man inte. Planck själv förstod den inte :-). Jag bara skojar det gjorde han naturligtvis, men han tyckte inte om den.

För att kunna förklara intensiteten vid korta våglängder (ultraviolettkatastrofen1 i den klassiska teorin, se Ultraviolet_catastrophe), var han tvungen att postulera att strålningen bara kunde utsändas i speciella kvanta med energin

E = hv

där h är Plancks konstant och v är strålningens frekvens.

På så sätt fick han fördelningen att gå mot noll även för korta våglängder, se nedanstående figur. Det finns en ganska bra härledning i Krane, Modern Physics. ISBN: 0-471-82872-6 (McMurry, Quantum Mechanics ISBN 0-201-54439-3).

Plancks strålningslag (Planck's_law) är fördelningen i våglängd hos en svartkroppsstrålare:



där B är utstrålad effekt, T är svartkroppens absoluta temperatur, kB är Boltzmanns konstant, h är Plancks konstant och c är ljushastigheten.

När man fått fram uttrycket för Plancks strålningslag är det relativt lätt att med hjälp av ett matematikprogram (Maple eller Mathematica) härleda Stefan–Boltzmanns lag (Stefan-Boltzmann_law)

P = e sT4

genom att integrera Planck-kurvan. T är absoluta temperaturen, e är emissiviteten och

s = 5.67 10-8 J s-1 m-2 K-4

är Stefan-Bolzmanns konstant.

Wiens förskjutningslag (Wien's_displacement_law)

lmaxT = 2.898×10&8722;3 m·K

härleds genom att derivera med avseende på våglängden och sätta derivatan lika med noll för att få maximum.

Se även fråga [14668] och Black Body Radiation.

_______________________________________________________________

1 Man ser i nedanstående figur att problemet med den klassiska teorin är att strålningen för höga frekvenser (korta våglängder) överskattas våldsamt. Anledningen är att det klassiska teorin bara tar hänsyn till att det finns fler tillstånd med korta våglängder än långa (kort våglängd betyder att fler stående vågor får plats i kaviteten).

Plancks antagande att energin hos en foton (ett begrepp som senare infördes av Einstein) beror av frekvensen (E=hv) betyder att det "kostar" energi att göra höga frekvenser. Vi får då en dämpande faktor given av boltzmannfördelningen (Boltzmannfördelning)

e-E/kT.

Med denna korrektion får man ovanstående planckfördelning vilken stämmer mycket bra med experimentella observationer.

Question Image

Länkar: http://physics.info/planck/  |  http://www.fysik.su.se/~milstead/fyu02/lec01_sv.pdf
/Peter E 2003-11-11


Varför är solen gul när den är mycket varmare än en gaslåga som är blå?

Fråga:
Varför är solen gul när den är mycket varmare än en gaslåga som är blå? Blått är ju varmare än gult? Har det med att göra hur långt elektronerna hoppar?
/Catharina  R,  Sollentuna musikklasser,  Sollentuna 2003-11-13
Svar:
Bra fråga Catharina!

Solens "yta" (fotosfären) sänder ut temperaturstrålning, dvs elektromagnetisk strålning som utsänds från varje kropp med temperatur över absoluta nollpunkten. Maximum för denna fördelning ligger i gult för solytans temperatur, c:a 6000 grader. Temperaturstrålningen för en s.k. absolut svart kropp (en kropp som absorberar all strålning som kommer in) beror bara på temperaturen, inte sammansättningen. Spektrum för temperaturstrålningen visas nedan för några temperaturer; figuren kommer från Radiation Laws.

Genom att mäta upp vid vilken våglängd maximum ligger, kan man bestämma temperaturen hos en kropp. Det är så man bestämt solytans temperatur till c:a 6000oC.

En gaslåga sänder ut ett
linjespektrum, dvs ett spektrum som består av spektrallinjer. Vilka linjer som utsänds beror på atomernas egenskaper. Så färgen på gaslågan beror på atomernas energinivåer.

Försök: tänd en bunsenlåga och justera den så den är blå. Kasta lite koksalt i lågan. Vad händer? Effekten beror på natriumet i NaCl.

Se vidare temperaturstrålning och
linjespektrum i Nationalencyklopedin. Temperaturstrålning (även kallad svartkroppsstrålning, ett begrepp som är förvirrande) behandlas även i Svartkropp.

Question Image

/Peter E 2003-11-13


Radon och naturlig radioaktivitet

Fråga:
Jag är Högskolestudent inom samhällsvetenskap och har en fråga angående radon.

Jag undrar hur den fysiska / kemiska processen ser ur när radondöttrar bildas. Bildas de av sig självt eller genom fotolys? Vad har radonet samt "dess döttrar" för fysiska beteckningar? Faller dessa sönder i yttligare beståndsdelar och i så fall hur osv.
/Robin  S,  Göteborg 2005-02-01
Svar:
Naturlig radioaktivitet

Alla grundämnen tyngre än helium har bildats i stjärnor genom fusion och vid slutet av stjärnans liv kastats ut i rymden. Dessa grundämnen kommer sedan ingå i materialet som bildar nästa generation stjärnor och planetsystem.

Många av de nuklider (en nuklid är en kärna med ett visst antal neutroner och protoner) som bildas på detta sätt är radioaktiva, och sönderfaller med en karakteristisk halveringstid. Solsystemet är c:a 4.5 miljarder år gammalt, så endast nuklider med halveringstider av storleksordningen miljarder år kan finnas kvar i dag.

De viktigaste av dessa ursprungliga radioaktiva ämnena är 40K (halveringstid 1.3 miljarder år), 235U (0.71 miljarder år), 238U (4.5 miljarder år) och 232Th (14 miljarder år),

De tre tunga ämnena ovan är urspunget till tre naturligt förekommande radioaktiva kedjor med en serie a- och b--sönerfall, se nedan.




U-235 serien






U-238 serien






Th-232 serien



Sedan finns även ett antal radioaktiva ämnen som ständigt bildas av den kosmiska strålningen. De viktigaste är
14C (5730 år), tritium (3H, 12.3 år) och 7Be (53 dagar).

Radon

I alla tre serierna ovan finns ädelgasen radon (Rn) i sönderfallskedjan. Den med längst halveringstid är 222Rn (3.8 dagar) i U-238 kedjan. Låt oss begränsa diskussionen till denna. När serien av sönderfall kommit till 222Rn kan, eftersom Rn är en gas, den radioaktiva nukliden ge sig iväg från uran-malmen och eventuellt upp till jordytan. Om radonet kommer in i ett hus och ansamlas där kan det vara mycket farligt.

En a-strålande källa är normalt inte särskilt skadlig, eftersom a-partiklarna stoppas av det yttersta hudlagret. Radon är emellertid en gas och kan komma in i lungorna. Om radonet sönderfaller där, kommer dotterkärnan och hela serien av döttrar att stanna i lungorna och ge upphov till mycket koncentrerade och skadliga strålskador. Radon-döttrarna är alltså alla nuklider som ligger efter radon i serien.

Den viktigaste effekten äv denna bestrålning är cancer. Mängden radon i hus varierar mycket över Sverige. Förekomsten är i första hand beroende av husets konstruktion och förekomsten av uran i berggrunden. Gränsvärdet för bostäder i Sverige är 200 Bg/m3, se Rikt- och gränsvärden för radon.

Det är svårt att uppskatta antalet cancerfall som orsakas av radonbestrålning (rökning är en mycket större orsak), men den senaste siffran jag sett är 800 personer per år i Sverige. Men, som sagt, denna siffra är mycket osäker.

Länkar: http://www.physics.isu.edu/radinf/natural.htm  |  http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/radser.html
/Peter E 2005-02-02


Hur mycket värms jorden upp av radioaktivt sönderfall i dess inre?

Fråga:
Eftersom jordens inre är varmt borde jordskorpan värmas "innifrån". Hur stor är denna effekt, dvs vilken temperatur skulle jordytan ha om vi bortser uppvärmningen från solen?
/Henrik  P,  Katedralskolan,  Lund 2005-04-08
Svar:
Den av radioaktivt sönderfall i jordens inre utvecklade effekten är c:a 1013 kalorier/s. Jordytan är

4p r2 = 4p(6.37106)2 = 51014 m2 = 51018 cm2

Effekten per cm2 som i ett jämviktstillstånd måste transporteras genom jordytan blir

1013/51018 = 210-6 kal/cm2/s

Nu är jorden ganska inhomogen, speciellt är det stor skillnad mellan land och hav. Detta beror dels på jordskorpans varierande tjocklek och dels på variationer i sammansättningen. Den uppmätta energitransporten är i havsområden 2.410-6 kal/cm2/s och i landområden 1.410-6 kal/cm2/s. Ovanstående medelvärde är i god överensstämmelse med dessa värden.

Hur stor är uppvärmningseffekten från jordens inre jämfört med solstrålningen? Låt oss börja med att göra om till SI-enheter

210-6 kal/cm2/s = 210-2 kal/m2/s = 0.08 W/m2

eftersom 1 kalori är c:a 4 joule.

Solarkonstanten, dvs den från solen instrålande effekten är 1370 W/m2, se fråga 13917. Värmen från jordens inre ger alltså ett mycket litet bidrag även med hänsyn taget att solstrålningen fördelas på ytan p r2 (cirkelyta) medan jordvärmen fördelas på ytan 4p r2 (klotyta).

Om vi, som frågan sade, bortser från solstrålningen, vilken temperatur skulle jordytan ha? Transporten av energi ut från jorden kan bara ske med elektromagnetisk strålning, s.k. temperaturstrålning. Den utstrålade effekten per m2 ges av Stefan-Boltzmanns lag:

P = sT4

där konstanten s=5.6710-8 W/m2/K4 och T är den absoluta temperaturen i kelvin. Tillämpning av denna på energiflödet från jordens innandöme ger

0.08 = 5.6710-8 T4

dvs

T4 = 1400000

och

T = 34 K eller -239oC (brrrr...)

Detta gäller om jorden kan betraktas som en absolut svart kropp, dvs om den absorberar all inkommande strålning.

Observera att vad vi räknat ut är temperaturen vid jordytan. Temperaturen i jordens inre är ju mycket högre (jordens inre är ju flytande). Man har en temperaturgradient (ökande temperatur med ökat djup) som bestäms av värmeledningsförmågan, se figuren i fråga [19301].

Tack Per-Gunnar Andreasson, Geologi, Lund för uppgifter om jordens inre!

Tillägg 12/11/08:

Enligt länk 1 är den utvecklade effekten 44 TW, vilket motsvarar 44/4=1.1 1013 cal/s, vilket stämmer bra med ovanstående värde. Länk 1 nämner även en referens som ger effektutvecklingen till 31 TW. Dessa värden är alltså ganska osäkra. Man har gjort uppskattningarna genom att mäta temperaturgradienten i borrhål på olika ställen av jordytan.

De isotoper som bidrar mest till uppvärmningen är 40K, 232Th och 238U (halveringstider 1.3 Ga, 14 Ga och 4.5 Ga [Ga=miljarder år]). Om man visste hur mycket av dessa isotoper som finns i jordens inre, skulle man lätt kunna räkna ut effektutvecklingen. Men man kan inte komma åt att analysera vilka halter dessa spårämnen har. Seismologiska data ger bra information om huvudsammansättningen, men spårämnena måste man uppskatta från halterna i meteoriter och solatmosfären.

I länk 1 föreslår man att man skall mäta ovanstående sönderfall genom att detektera neutriner. Dessa tar sig lätt genom jordens inre och kan detekteras på ytan. Genom att mäta neutrinernas antal, energi och vilken riktning de kommer ifrån, kan man räkna ut hur mycket av ovanstående isotoper som finns i jordens inre, och därmed få en direkt mätning av effektutvecklingen. Mätningen är emellertid ganska svår och kräver stora och dyra detektorer.
Länkar: http://arxiv.org/abs/physics/0607230
/Peter E 2005-04-08


Temperaturmätning med en IR-pyrometer

Fråga:
Vi mäter temperaturen med en IR-pyrometer på en Leslie kub som har en blank koppar yta, matt koppar yta, svart yta och en vit yta. Vi fyller kuben med kokande vatten och mäter temperaturen. Vi mäter även innertemperaturen med en vanlig termometer. Den svarta ytan och den vita ytan visar samma temperatur och följer inner temperaturen. Den matta kopparytan stiger långsamt men inte lika mycket som den svarta och vita ytan. Den blanka kopparytan visar konstant temperatur på ca 26 C. Kan du förklara varför det visar så här.
/Laila  N,  Mälardalens högskola,  Eskilstuna 2005-12-16
Svar:
Laila! Resultaten du fått är helt korrekta och förklarliga - man måste bara tolka resultaten korrekt.

En IR-pyrometer mäter inte temperaturen direkt utan den mäter värmestrålningen från ett objekt. Om man sedan antar att kroppen strålar som en svart kropp, så kan man räkna ut temperaturen, se temperaturstrålning. Pyrometern mäter alltså vad man kallar effektiv temperatur vilket inte behöver vara densamma som den verkliga temperaturen man mäter med en termometer.

Leslie-kuben är en vattenfylld kub, se bilden nedan. De fyra vertikala ytorna är belagda på olika sätt: svartmålad, vitmålad, matt yta, blank yta. Vattnet i kuben kan värmas med en bunsenbrännare, och temperaturen hos vattnet (och därmed även temperaturen hos sidoytorna) kan mätas med en termometer. Utstrålningen (värmestrålningen, den infraröda strålningen) från var och en av de fyra ytorna mäts med en pyrometer (se Pyrometer).

Emmissionsförmågan för de olika sidorna
kan vara:
 svart 100
vit 97
matt 20
blank 7
Det är alltså, kanske lite förvånande, inte mycket skillnad mellan svart och vit - den stora skillnaden är mellan svart och blank. Eftersom emissionförmågan är mycket lägre för den blanka sidan blir den effektiva temperaturen mycket lägre, precis som du observerar. Men kom ihåg att detta inte är den verkliga temperaturen - den är lika för alla fyra ytorna! Emissionsförmågan är enligt Kirchhoffs strålningslag (fråga [9333]) direkt relaterad till absorptionsförmågan - hög absorbtionsförmåga ger hög emissionsförmåga.

Kan man förstå den lilla skillnaden mellan vit yta och svart yta? För synligt ljus är det ju stor skillnad i absorptionsförmåga - svart absorberar naturligtvis ljus mycket mer, så emissionsförmågan borde vara stor. Men detta gäller synligt ljus som motsvarar en temperatur på 5000-6000 oC. Vid den aktuella temperaturen (0-100 oC) är det infraröd strålning som dominerar, och absorptionsförmågan för infrarött är uppenbarligen nästan lika för den svarta och den vita ytan. Därför blir även emissionsförmågan nästan densamma.

Question Image

Länkar: http://www.pasco.com/prodCatalog/TD/TD-8554_thermal-radiation-cube-leslies-cube/
/Peter E 2005-12-17


Sida 2 av 5

Föregående | Nästa

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

** Frågelådan är stängd för nya frågor tills vidare **
Länkar till externa sidor kan inte garanteras bibehålla informationen som fanns vid tillfället när frågan besvarades.

Creative Commons License

Denna sida frÃ¥n NRCF är licensierad under Creative Commons: Erkännande-Ickekommersiell-Inga bearbetningar