Vill du ha ett snabbt svar - sök i databasen:

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

7 frågor / svar hittades

Hur varierar jordens gravitation om man gräver sig under ytan?

Fråga:
Hur varierar Jordens gravitation om man gräver sig under ytan? Jordens gravitation 100 mil ovanför jordens yta är lätt
att räkna ur, men hur stor är jordens gravitation 100 mil under jordens yta?
/Lars  B,  Fysiska institutionen Lund,  Trelleborg 1998-02-21
Svar:
Gravitationen (av latin gravis = tung) eller tyngdkraften är en av universums fyra fundamentala krafter, se fråga [3716]. Det är den attraherande kraft som massor utsätter varandra för, och ger upphov till det som vi kallar massans tyngd.

Gravitationskraften på massan m utanför ett klot med massan M ges av
F=GmM/r2, där r är avståndet till masscentrum. Gravitationen innanför klotets yta beror av massfördelningen, eftersom endast den del av klotets massa som ligger innanför r ger bidrag till attraktionen. Om jordens densitet är konstant (vilket den definitivt
inte är), så ges massan innanför r av M'=Mr3/R3,
där R är jordradien. Gravitationskraften under jordytan (r mindre än R) blir alltså: F=GmMr/R3.

Gravitationskraften vid jordens medelpunkt (r=0) blir alltså 0. Om man kunde borra ett hål rakt genom jorden (omöjligt eftersom det är mycket varmt i jordens centrum och materien är flytande) skulle man kunna falla rakt igenom jorden och komma ut (vända vid jordytan) på andra sidan - bortsett från luftmotståndet. Om vi bromsar fallet skulle vi kunna stanna i centrum och sväva i ett tyngdlöst tillstånd.

Figuren nedan visar den uppmätta densiteten i jordens inre (från seismiska vågor, se Structure_of_the_Earth) och den beräknade tyngdaccelerationen. För de inre delarna kan man se att tyngdaccelerationen är approximativt proportionell mot r, medan den för de yttre delarna är närmast konstant.

Se även fråga [19792].

Question Image

Länkar: https://www.physicscentral.com/explore/poster-earth.cfm  |  https://www.youtube.com/watch?v=urQCmMiHKQk
/Peter Ekström 2002-10-10


Hur mycket värms jorden upp av radioaktivt sönderfall i dess inre?

Fråga:
Eftersom jordens inre är varmt borde jordskorpan värmas "innifrån". Hur stor är denna effekt, dvs vilken temperatur skulle jordytan ha om vi bortser uppvärmningen från solen?
/Henrik  P,  Katedralskolan,  Lund 2005-04-08
Svar:
Den av radioaktivt sönderfall i jordens inre utvecklade effekten är c:a 1013 kalorier/s. Jordytan är

4p r2 = 4p(6.37106)2 = 51014 m2 = 51018 cm2

Effekten per cm2 som i ett jämviktstillstånd måste transporteras genom jordytan blir

1013/51018 = 210-6 kal/cm2/s

Nu är jorden ganska inhomogen, speciellt är det stor skillnad mellan land och hav. Detta beror dels på jordskorpans varierande tjocklek och dels på variationer i sammansättningen. Den uppmätta energitransporten är i havsområden 2.410-6 kal/cm2/s och i landområden 1.410-6 kal/cm2/s. Ovanstående medelvärde är i god överensstämmelse med dessa värden.

Hur stor är uppvärmningseffekten från jordens inre jämfört med solstrålningen? Låt oss börja med att göra om till SI-enheter

210-6 kal/cm2/s = 210-2 kal/m2/s = 0.08 W/m2

eftersom 1 kalori är c:a 4 joule.

Solarkonstanten, dvs den från solen instrålande effekten är 1370 W/m2, se fråga 13917. Värmen från jordens inre ger alltså ett mycket litet bidrag även med hänsyn taget att solstrålningen fördelas på ytan p r2 (cirkelyta) medan jordvärmen fördelas på ytan 4p r2 (klotyta).

Om vi, som frågan sade, bortser från solstrålningen, vilken temperatur skulle jordytan ha? Transporten av energi ut från jorden kan bara ske med elektromagnetisk strålning, s.k. temperaturstrålning. Den utstrålade effekten per m2 ges av Stefan-Boltzmanns lag:

P = sT4

där konstanten s=5.6710-8 W/m2/K4 och T är den absoluta temperaturen i kelvin. Tillämpning av denna på energiflödet från jordens innandöme ger

0.08 = 5.6710-8 T4

dvs

T4 = 1400000

och

T = 34 K eller -239oC (brrrr...)

Detta gäller om jorden kan betraktas som en absolut svart kropp, dvs om den absorberar all inkommande strålning.

Observera att vad vi räknat ut är temperaturen vid jordytan. Temperaturen i jordens inre är ju mycket högre (jordens inre är ju flytande). Man har en temperaturgradient (ökande temperatur med ökat djup) som bestäms av värmeledningsförmågan, se figuren i fråga [19301].

Tack Per-Gunnar Andreasson, Geologi, Lund för uppgifter om jordens inre!

Tillägg 12/11/08:

Enligt länk 1 är den utvecklade effekten 44 TW, vilket motsvarar 44/4=1.1 1013 cal/s, vilket stämmer bra med ovanstående värde. Länk 1 nämner även en referens som ger effektutvecklingen till 31 TW. Dessa värden är alltså ganska osäkra. Man har gjort uppskattningarna genom att mäta temperaturgradienten i borrhål på olika ställen av jordytan.

De isotoper som bidrar mest till uppvärmningen är 40K, 232Th och 238U (halveringstider 1.3 Ga, 14 Ga och 4.5 Ga [Ga=miljarder år]). Om man visste hur mycket av dessa isotoper som finns i jordens inre, skulle man lätt kunna räkna ut effektutvecklingen. Men man kan inte komma åt att analysera vilka halter dessa spårämnen har. Seismologiska data ger bra information om huvudsammansättningen, men spårämnena måste man uppskatta från halterna i meteoriter och solatmosfären.

I länk 1 föreslår man att man skall mäta ovanstående sönderfall genom att detektera neutriner. Dessa tar sig lätt genom jordens inre och kan detekteras på ytan. Genom att mäta neutrinernas antal, energi och vilken riktning de kommer ifrån, kan man räkna ut hur mycket av ovanstående isotoper som finns i jordens inre, och därmed få en direkt mätning av effektutvecklingen. Mätningen är emellertid ganska svår och kräver stora och dyra detektorer.
Länkar: http://arxiv.org/abs/physics/0607230
/Peter E 2005-04-08


När svalnar jordens inre av?

Fråga:
Om jorden svalnade av helt så skulle kontinentaldriften stanna och med tiden berg och land nötas ner/eroderas av regn och vind och vatten täcka hela planeten har det sagts mig; den Blå planeten är ett faktum. Det verkar rimligt. Men vilka tidrymder skulle det handla om, dvs hur länge kommer jorden att ha ett varmt, drivande inre och hur lång tid kan erosionen antas ta därefter?

Månen lär ha bildats ungefär samtidigt som jorden. Har den också en varm kärna? Eller har kärnreaktionerna tagit slut där; slut på bränsle helt enkelt?
/Thomas  Ã,  Knivsta 2010-11-12
Svar:
Thomas! Det är radioaktivt sönderfall som håller jordens inre flytande, se fråga [13938]. Eftersom halveringstiderna är över 1 miljard år, är avsvalningen inget vi behöver oroa oss för på en tidsskala 100 miljoner år. Sedan tror jag inte jorden skulle bli en havsplanet. Om kontinentadriften upphörde skulle koldioxidhalten i atmosfären öka - fråga [17321] beskriver processen som håller nere koldioxidhalten - och växthuseffekten skulle orsaka en temperaturökning liknande vad som skett med Venus. Med en temperatur på flera 100 grader Celsius kan det inte förekomma flytande vatten.

Vad gäller månen så är den redan avsvalnad - den innehåller ingen flytande kärna. Anledningen är inte att det finns mindre halt av radioaktiva element utan att månen är mindre. Uppvämningen från radioaktivitet är proportionell mot massan som är proportionell mot volymen = 4pr3/3. Förlusten av energi genom elektromagnetisk strålning (värmestrålning) är proportionell mot ytan = 4pr2. Förhållandet mellan uppvärmning och avsvalning är alltså proportionell mot radien r. För liten radie dominerar utstrålningen och man får en låg jämviktstemperatur, se fråga [13938] hur man räknar ut denna.
/Peter E 2010-11-14


Hur uppstod Jordens magnetfält från första början?

Fråga:
Hej! Jag håller på med mitt projektarbete som involverar Jordens magnetfält. Jag förstår hur magnetfält kan upprätthållas men vad jag där i mot inte kan förstå är hur Jordens magnetfält uppstod från första början så att det kunde därefter upprätthållas. Min fråga är då hur uppstod Jordens magnetfält från första början?
Tack i förhand!
/Simon  P,  Rönneskolan,  Ängelholm 2012-09-17
Svar:
Simon! Om jag visste det skulle jag skriva en artikel om det och bli världsberömd :-).

Det är inte så lätt att förstå hur det globala magnetfältet uppstått. Om vi börjar med att titta på de övriga jordlika planeterna i solsystemet så har, förutom jorden, Merkurius ett magnetfält, medan Venus och Mars saknar globalt magnetfält, se Planetary Fact Sheets.

För att ett magnetfält skall uppstå i en planet krävs dels en flytande, ledande kärna och en mekanism som för in energi i systemet. Energin ger upphov till temperaturskillnader som ger konvektion (strömning).

Jorden har en kärna som huvudsakligen innehåller järn. På grund av den höga temperaturen (orsakad av radioaktivt sönderfall i jordens inre, se fråga [13938]) är den yttre delen av kärnan flytande, medan det höga trycket längre in gör den inre järnkärnan fast. Konvektion i den yttre flytande järnkärnan skapar magnetfältet. Konvektionen orsakas av temperaturskillnader och corioliskraften ([3160]) som orsakas av jordens rotation.

Hur magnetfältet skapades har man bara en kvalitativ kunskap om. Ett ökande magnetfält borde inducera ett elektriskt fält som i sin tur ger en elektrisk ström. Denna ström är enligt Lenz lag (fråga [11791]) riktad så att ändringen i magnetfältet motverkas. Konvektionen kommer emellertid att få det "infrysta" magnetfältet att flytta på sig, vilket gör att fältet kan öka trots motståndet pga Lenz lag. Denna process skulle kunna fortsätta obegränsat om inte det ökande magnetfältet bromsade upp vätskans rörelse. Man får alltså ett relativt stabilt jämviktsläge.

Hur kan man då förstå förekomsten/avsaknaden av magnetfält hos de ovan nämnda planeterna?

Venus är på många sätt mycket lik jorden, så man borde vänta sig en flytande järnkärna och ett magnetfält. Skillnaden är att Venus roterar mycket långsamt (Planetary Fact Sheets), vilket gör att konvektionen inte påverkas av någon corioliskraft.

Mars är betydligt mindre än jorden, så avsvalningen har gått längre. Mars saknar därför en flytande järnkärna, och därmed magnetfält.

Att Merkurius har ett magnetfält kan tyckas konstigt eftersom den dels är mindre än Mars och dels för att den roterar mycket långsamt. Det som gör att Merkurius kan ha en flytande järnkärna är att den har en mycket excentrisk bana och befinner sig nära solen. Gravitationskraften "knådar" då Merkurius så att innertemperaturen kan bli tillräckligt hög. Detta är helt analogt med jupitermånen Io, se [2571].

Se vidare Earth's_magnetic_field och Dynamo_theory.
/Peter E 2012-09-17


Vad skulle hända om jordens inre stelnade och blev hård?

Fråga:
Vad skulle hända om jordens inre stelnade och blev hård?
/Mary  D,  Skälltorpskolan,  Hisings/backa 2014-01-27
Svar:
Mary! Se fråga [17056] och [17484] varför jordens inre är varmt och flytande. Temeraturen är 1000-7000 K beroende på djup, se nedanstående figur från Geothermal_gradient.

Det omedelbara som skulle ske om jordens inre stelnade är att vi inte skulle få några jordbävningar eller vulkanutbrott. Det är kanske bra, men värre är att jordens magnetfält (fråga [18768]) skulle försvinna.

Förutom att kompasser skulle bli förvirrade så skulle avsaknad av magnetfält göra att vi inte har något skydd för partikelstrålning från solen, se Solvind. Detta osakar en ökad nivå av joniserande strålning och en gradvis uttunning av atmosfären.

Om jorden inre stelnar kommer även kontinentaldriften att upphöra. Denna har en stabiliserande verkan på klimatet genom att hålla koldioxidhalten i atmosfären på en låg nivå, se fråga [17321]. Utan kontinentaldrift skulle jorden kunna råka ut för en extrem växthuseffekt som planeten Venus med medeltemperatur på uppemot 500oC.

Nu är dessa effekter ingenting att oroa sig för eftersom jordens inre kommer att fortsätta att vara flytande under hundratals miljoner år framåt.

Question Image

/Peter E 2014-01-27


Frågor om jordens kärna

Grundskola_7-9: Blandat - geologi, jordens inre [19312]
Fråga:
Hej!
Jag håller på att skriva en uppsats om upptäckten av jordens kärna och har några frågor om det. den första är att det finns väl ingen specifik person som upptäckte jordens kärna, eller? har kärnan påverkat oss människor eller samhället på något vis? hur har olika kulturer sett på denna upptäckt?
tacksam för svar:)
/Filippa  E,  Birkaskolan,  ekerö 2014-02-04
Svar:
Filippa! Vi är inte experter på geologi, men lite kan vi säga.

I naturvetenskap är det sällan en person och en observation som etablerar ny kunskap - oftast är det en serie mindre upptäckter så man till slut kommer fram till det förhoppningsvis korrekta. För jordens inre är det framför allt följande observationer som varit viktiga för att bygga en modell:

Seismiska vågor från jordbävningar och explosioner

Jordens medeldensitet

Jordens magnetfält

Temperatur som funktion av djupet (endast nära ytan)

Relativ förekomst av grundämnen i solsystemet

Allmänna kunskaper i kemi och fasta/flytande material

Lite historik om seismologi finns i artikeln SeismologyMapping_the_earth's_interior.

Den enda direkta påverkan från kärnan är det jordmagnetiska fältet, se fråga [19301].

På din fråga om hur det påverkat olika kulturer skulle jag vilja påstå: inte alls. Normalt står naturvetenskapen fritt från kultur och religion. Undantaget är naturligtvis evolutionsläran som är kontroversiell i flera religioner.

Mer om vad man trott om jordens inre finns i Wikipedia-artiklarna Teorin_om_en_ihålig_jord och Hollow_Earth.

Se vidare Structure_of_the_Earth.

Question Image

/Peter E 2014-02-05


Geoneutriner

Fråga:
Hej!
I en artikel nämns "geoneutriner", och jag antar att det innebär neutriner producerade i jorden i st f i solen, samt att dessa skulle kollidera med antipartiklar, vilket väl är antiprotoner, positroner m fl.
Är det överhuvudtaget möjligt att registrera sådana kollisioner, med tanke på hur "ointresserade" neutriner alls är att reagera? Vad kan skilja en korrekt signal från en falsk?
/Thomas  Ã,  Knivsta 2016-09-18
Svar:
Ja, geoneutriner är neutriner som bildas vid betasönderfall av radioaktiva ämnen (främst isotoper av uran, thorium och kalium) i jordens inre.

Det är dåligt känt hur stor effekt utvecklas genom radioaktivt sönderfall inne i jorden eftersom det är svårt att bestämma förekomsten av olika grundämnen. Man vet ganska väl vilken effekt som transporteras bort genom jordytan, men en del av denna effekt kan vara en långsam avsvalning av jordens inre. Att detektera geoneutriner skulle vara av mycket stort intresse eftersom det skulle ge information hur mycket sönderfall som förekommer.

Tekniken att detektera geoneutriner håller på att utvecklas, se en fyllig artikel i Wikipedia, Geoneutrino.

Se vidare fråga [13938] och länk 1.
Länkar: http://onlinelibrary.wiley.com/doi/10.1029/2012RG000400/full
/Peter E 2016-09-19


| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

** Frågelådan är stängd för nya frågor tills vidare **
Länkar till externa sidor kan inte garanteras bibehålla informationen som fanns vid tillfället när frågan besvarades.

Creative Commons License

Denna sida frÃ¥n NRCF är licensierad under Creative Commons: Erkännande-Ickekommersiell-Inga bearbetningar