Vill du ha ett snabbt svar - sök i databasen:

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

4 frågor / svar hittades

Varför räknas ett arbete endast om det sker i kraftens riktning?

Fråga:
Hej!
Varför räknas ett arbete endast om det sker i kraftens riktning? Står du stilla och håller en väska tex, så krävs ju också en kraft!
Inga läroböcker förklarar detta!
Tacksam för svar.
/Linda  M,  Stenungskolan,  Stenungsund 2004-10-11
Svar:
Mycket bra fråga Linda! Det förvånar mig att vi inte tycks ha besvarat den tidigare.

Ja, det kan tyckas konstigt! Låt oss först föreställa oss en väska som står på marken. Utför den något arbete? Du håller nog med om att den inte gör det.

Det är samma sak om du håller den i handen. Varför blir du då trött? Det är en fysiologisk effekt. För att hålla väskan stilla måste du spänna musklerna i armen. Detta kräver energi som kommer från t.ex. socker som transporteras med blodet. Om du nu inte utför ett arbete på väskan, var tar denna energi vägen? Vi måste ju hålla fast vid energiprincipen (energi kan varken skapas eller förstöras)! Jo den övergår i värme. Tänk på att när du arbetar hårt (t.ex. springer) så blir du varm.

Om du ställer ner väskan på golvet? Då utför du på samma sätt som ovan inget arbete eftersom kraften du påverkar väskan med är motsatt rörelseriktningen. Eftersom kraft och rörelse är i motsatta riktningar (din motkraft uppåt, rörelseriktningen neråt), så blir det av dig utförda arbetet negativt. Detta skall man tolka så att tyngdkraften utför ett arbete på dig. Om du vore annorlunda konstruerad (t.ex. med en motvikt som transporteras uppåt med hjälp av tyngdkraftsarbetet) skulle du kunna tillgodogöra dig och lagra detta arbete.

Om du släpper väskan då? Då ökar ju rörelseenergin. Ja, men då är det tyngdkraften som utför arbetet.

Nedanstående bild från länk 1 ger exempel på krafter som inte utför arbete.

Är inte fysiken underbar - man kan "förklara" allt :-)!

Arbete och rörelseenergi

Arbete definieras som dW = F·ds, där F är kraften som verkar på kroppen under sträckan ds i samma riktning som ds. (se även Fysikaliskt_arbete).

Om en kropp med massan m påverkas av en kraft F kommer kroppen att accelereras (acceleration a) och det utförda arbetet att förvandlas till rörelseenergi (vi bortser från friktion):

F ds = m a ds = m dv/dt ds = m dv ds/dt = m v dv

Integration från 0 till v ger rörelseenergin (kinetiska energin) K

K = int(m v dv) = mv2/2

Rörelseenergin är alltså det mekaniska arbete som krävs för att reducera en kropps hastighet från v till noll eller omvänt öka hastigheten från 0 till v.

Om F och ds är motriktade (du puttar på en bil som rör sig mot dig) så är produkten Fds negativ, och du utför ett negativt arbete på bilen. Bilen får då minskad rörelseenergi, dvs den bromsas upp.

Krafter som inte utför arbete

Ovanstående gäller förstås bara om det finns en komponent av kraften i rörelsens riktning. Det finns flera exempel på att en kraft verkar på en kropp utan att utföra arbete. Det mest uppenbara är kraften som påverkar en laddad partikel i ett homogent magnetfält, Lorentzkraften. Om laddningen är q, magnetfältet B och hastigheten v så blir kraften (se Lorentzkraft)

F = q (v x B)

där F, v och B är vektorer. Kraften, och därmed avböjningen är alltså vinkelrätt mot magnetfältet och mot rörelseriktningen. Det utförs alltså inget arbete på laddningen, och den kan fortsätta i en cirkel med konstant radie hur länge som helst. Detta drar man nytta av i en synkrotron där man kan lagra elektroner som kan cirkulera i princip hur länge som helst. Visserligen får man accelerera dem lite grann, men det beror på att elektronerna sänder ut ljus, s.k. synkrotronstrålning (Synkrotronstrålning), när de avböjs.

Ett annat exempel är en satellit som kretsar kring en planet i en exakt cirkulär bana med konstant hastighet. Eftersom gravitationskraften är riktad mot planeten och rörelseriktningen vinkelrätt däremot utför kraften inget arbete. Vi kan se att om gravitationskraften utfört ett arbete så måste satellitens bana ändras på något sätt om vi skall bevara den totala energin.

Lägesenergi

För att generalisera till elliptiska banor behöver vi definiera ännu ett begrepp. Lägesenergi är energi som finns hos ett föremål som påverkas av ett kraftfält, så som gravitation eller elektriska fält. Lägesenergi anges jämfört med en referenspunkt – exempelvis kan lägesenergi från gravitation anges jämfört med markhöjd eller havsnivån. Den mest strikta referenspunkten är en punkt på oändligt avstånd, där alla kraftfält är 0. Sett ur det perspektivet är den potentiella energin negativ för alla föremål i universum.

Om satelliten däremot går i en elliptisk bana finns det en komponent av gravitationskraften i rörelseriktningen: när satelliten rör sig närmare planeten utför gravitationskraften ett arbete på satelliten, vilket medför att satellitens hastighet ökar. När satelliten rör sig bort från planeten utför gravitationskraften ett negativt arbete (kraften och rörelsen är ju motriktade). Detta arbete tas från satellitens rörelseenergi som alltså minskar. Den totala energin E dvs summan av kinetisk energi (K) och lägesenergi (U(r)) är konstant:

E = K + U(r)

När satelliten kommer närmare planeten kommer alltså K att öka. U(r) blir då mer negativt för att E skall vara konstant. Vi förutsätter då den normala definitionen att lägesenergin U(&8734;) på oändligt avstånd är 0.

Anmärkning: Potentiell energi används ofta som synonymt till lägesenergi. Potentiell energi är emellertid ett lite vidare begrepp eftersom det även innefattar elastisk energi.

Se vidare Mekaniskt_arbete, Rörelseenergi, Potentiell_energi och länk 2.

Question Image

Länkar: http://hyperphysics.phy-astr.gsu.edu/hbase/work2.html  |  https://www.youtube.com/watch?v=sY4Y4AjfhGU
/Peter E 2004-10-11


Rörelseenergi för en rullande kula

Fråga:
Hejsan! Jag har ett problem.
En kula släpps i en kulbana som står placerad på ett bord, vid kanten. Jag har räknat fram att kulan har fått en viss teoretisk energi när den lämnar banan och den har fått en minde energi i verkligheten.

Jag kan anse att luftmotståndet och friktionen inte har någon påverkan och jag har listat ut att det har något med rotationen av kulan att göra, så min fråga är nu. Vart tar energin vägen på sin resa ned för kulbanan?

svara gärna snabbt, arbetet ska lämnas in denna veckan..
/Anna  O,  Birger Sjöbergymnasiet,  Vänersborg 2006-05-16
Svar:
Ditt problem är inte helt lätt, du får nöja dig med en skiss. Lösningen finns under länk 1, men där på engelska.

Vi börjar med att bortse från kulans rotation. Antag kulans massa är m och dess sluthastighet v. Då gäller enligt energiprincipen (potentiell energi på höjden h = kinetisk energi vid botten):

mgh = mv2/2

dvs

v2 = 2gh

Om kulan inte glider alls kommer den att sättas i rotation. Om tyngdpunktens hastighet i detta fallet är u, kommer vinkelhastigheten w att vara u/r där r är kulans radie. (Du får detta resultat eftersom den del av kulan som rör vid kulbanan har hastigheten 0 i förhållande till banan - kom ihåg, inget glid!).

En homogen kulas tröghetsmoment ges av J = 2mr2/5 (TröghetsmomentExempel) och rotationsenergin är Jw2/2.

Vi adderar translations-kinetiska energin och rotationsenergin och får

mgh = mu2/2 + (2mr2/5)(u/r)2/2 = mu2(1/2) + mu2(1/5)

dvs

u2 = (10/7)gh = 1.43gh

Detta är klart mindre än 2gh som vi fick ovan eftersom ju en del energi går till kulans rotationsenergi. Förhållandet u/v blir ungefär 0.85, alltså 15% lägre hastighet än en kula som glider perfekt och inte roterar.

Förhållandet mellan rotationsenergi och translationsenergi blir enligt ovan

(1/5)/(1/2) = 2:5.

Tillägg om puttning i golf

Golfspelare som puttar bra ser till att slå till bollen med en något uppåtgående rörelse för att bollen om möjligt skall börja rulla omedelbart. Om man slår till bollen helt centralt kommer bollen att glida ett tag på gräset. Friktionen kommer efter ett tag att få bollen att rulla, men rotationsenergin måste tas från rörelseenergin. Bollen bromsas alltså upp för att den skall kunna få rotation. Det visar sig att längden på puttarna blir mycket mer konsistent om man kan få bollen att rulla direkt vid tillslaget.

Tekniken att få överspinn på bollen direkt vid tillslaget används även t.ex. i biljard då man oftast slår till bollen ovanför ekvatorsplanet vilket får bollen att börja rulla omedelbart.

/fa
Länkar: http://modeling.asu.edu/listserv/U7_KE_rolling_ball02.pdf
/Peter E 2006-05-16


Berg-och-dal bana med loop

Fråga:
Frågan gäller en berg-och-dal bana med en loop.
Hur stor är centripetalaccelerationen längst upp på karusellen? Var är centripetalaccelerationen som störst?
/Ali  z,  BORGARSKOLAN,  MALMÖ 2009-11-05
Svar:
Ali! Jag hade lite svårt att förstå din fråga. Det du frågar om är nog en berg-och-dalbana (Roller_coaster, Roller_coaster_elements) med en loop (Vertical_loop), se nedanstående foto av den första loopen (Coney Island, New York) från Wikimedia Commons. Jag har kortat ner din fråga något.

Jag tänkte ta upp ett par saker av vad jag tror du frågade om: hur räknar man ut vagnens hastighet i olika punkter och hur stora är g-krafterna? Sajten Lisebergs-Fysik innehåller mycket mer information bland annat om berg-och-dal banor.

För att få någon idé om storlekar, hastigheter etc, så har jag tittat på data från ett typexempel, länk 1.

En klassisk berg-och-dal bana fungerar så att vagnen dras upp till maxhöjden, och får sedan rulla i princip fritt ner och upp längs spåret. En förenklad version visas i figuren nedan. Vagnen startar med hastigheten 0 från punkt 1. Den accelereras nedför backen och går runt loopen. I verkligheten är naturligtvis loopen lite skruvad så att utgången är vid sidan av ingången.

Om vi antar att det inte finns några friktionsförluster kan vi använda energiprincipen för att räkna ut hastigheten i olika punkter: Totala energin = potentiell energi + kinetisk energi, Epot + Ekin = konstant.

Vagnens massa är M kg och vi räknar med tyngdaccelerationen g=10 m/s2. Radien på loopen är r=5 m.

I tabellen nedan listas värden för punkterna 1-4. De olika kolumnerna är:

Nr Punkt nummer

h Höjd över nollnivån (lägsta nivån [punkt 2] har h=0)

Epot Potentiell energi: Mgh

Ekin = 160M - Epot

v2 räknas ut från Ekin = Mv2/2

v räknas ut från v2

v2/r är centripetalaccelerationen i cirkelbanan i m/s2

C acc är centripetalaccelerationen uttryckt i g

Totalt g är totala g-kraften om vi även tar tyngdaccelerationen i beaktande, se vektordiagrammen längst ner i figuren. I stället för att involvera krafter är det i detta fallet enklare att räkna med accelerationer. Tyngkraften motsvaras då av en acceleration riktad rakt upp med beloppet 1g (de små svarta pilarna i figuren).


Nr h Epot Ekin v2 v v2/r C acc Totalt g
1 16 160M 0 0 0
2 0 0 160M 320 18 64 6.4 7.4
3 5 50M 110M 220 15 44 4.4 4.5
4 10 100M 60M 120 11 24 2.4 1.4
m J J (m/s)2 m/s m/s2


Vi kan räkna ut vad starthöjden skulle vara om centripetalaccelerationen i punkt 4 skulle vara g, dvs passagerarana skulle vara tyngdlösa:

v2/r = 10 -> v2 = 105 = 50

Ekin = Mv2/2 = M50/2 = 25M

Potentiella energin 25M motsvarar höjden 2.5 m, så starthöjden behöver vara 12.5 m för att centripetalaccelerationen i punkt 4 precis skall kompensera tyngaccelerationen.

Kommentarer

1 Maximala g-kraften i detta exemplet är 7.4 (i punkt 2) medan det i länk 1 sägs att den maximala g-kraften är 4. Ett skäl till avvikelsen kan vara att loopen inte vilar på lägsta nivån eller har större radie. Ett annat skäl är att man gör inte loopen cirkulär, utan päronformad med tjocka änden nedåt. Man får då en större krökningsradie där vagnen rör sig snabbast, och en mindre radie där den rör sig långsammast. Man jämnar alltså ut g-kraftena i loopen.

2 Det kan tyckas farligt att vagnen är upp-och-ner i toppen av loopen. I moderna anläggningar (men inte i den avbildade nedan) har man dubbla skenor både över och under hjulen. Om alltså vagnen skulle tappa fart så att den inte går tillräckligt snabbt på toppen, så skulle den ändå hänga kvar i de extra skenorna.

Se även Berg-_och_dalbana.

Question Image

Länkar: http://www.rcdb.com/181.htm
/Peter E 2009-11-06


Vad kostar det i bränsle att öka hastigheten för en lastbil från 60 till 80 km/tim?

Fråga:
Jag skall hålla en utbildning för lastbilschaufförer. Hastigheten och förmågan att planera sin körning är alltid ett hett ämne som kräver konkreta svar.

Fråga: Vad kostar det i energi (diesel) att öka hastigheten från 60 till 80 km/tim resp från 5 till 25/km/tim. Fordonets totalvikt 60 ton resp 20 ton.
Konsekvens: Om man bromsar från 80 till 60 km/tim förlorar man i princip lika mycket i rörelseenergi som det kostat att accelera från 60 till 80 km/tim.
/Klas  G,  Brantevik 2009-11-09
Svar:
Klas! Eftersom man normalt kör ganska långa sträckor så är det inte accelerationerna som är avgörande utan friktionsförluster - inklusive luftmotstånd. En personbil har en optimal hastighet på c:a 70-90 km/t, se länk 1 och 2 nedan. I länk 1 finns ett diagram på bränsleeffektivitet och tips för effektiv körning.

Om hastigheten är v så är luftmotståndet (bromsande kraften)

Fluftmotstånd = konstantv2

(se Drag_(physics)). Effekten går som Fv, så förlusterna från luftmotståndet går som v3. Å andra sidan kör man längre per tidsenhet, så slutresultatet blir att effektiviteten minskar som v2.

Det är klart att det optimala är att köra med så konstant hastighet som möjligt. Om man inte har KERS (se fråga 16552 nedan) så är ju bromseffekten rena förluster.

Eftersom rörelseenergin är mv2/2, kostar det mycket mer energi att accelerera från 60 km/t till 80 km/t än att accelerera från 5 km/t till 25 km/t. Kraften som krävs för accelerationen är (bortsett från luftmotståndet) densamma, men kraften verkar vid den högre hastigheten på en längre sträcka, så den erfordrade energin blir större.

Bränsleekonomi för en bil är ett ganska komplicerat ämne med många parametrar, så man kan inte räkna ut bränsleförbrukningen med hjälp av en enkel formel. Det bästa är att pröva själv - vissa bilar visar den ögonblickliga bränsleförbrukningen så för dessa är det enkelt.

Låt oss avslutningsvis beräkna hur mycket diesel det kostar att accelerera en 20 tons lastbil från 5 till 25 km/t och från 60 till 80 km/t. Energiutbytet för dieselolja är enligt Energy_content_of_biofuel 40.3 MJ/l. Om vi räknar med en effektivitet på 40% blir energiutbytet 16100 kJ/l. Detta värde har använts för att räkna ut förbrukningen i den sista kolumnen.

Hastighet Ekin DEkin Förbrukning
5 1.4 19.6
25 6.9 476 456.4 0.028
.
60 16.7 2790 80 22.2 4930 2140 0.13
km/t m/s kJ kJ liter dieselolja

Det tar alltså hisnande 0.13 l diesel att accelerera vår 20 tons lastbil från 60 till 80 km/t!
Länkar: http://eartheasy.com/live_fuel_efficient_driving.htm  |  http://www.newton.dep.anl.gov/askasci/eng99/eng99540.htm
/Peter E 2009-11-09


| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

** Frågelådan är stängd för nya frågor tills vidare **
Länkar till externa sidor kan inte garanteras bibehålla informationen som fanns vid tillfället när frågan besvarades.

Creative Commons License

Denna sida från NRCF är licensierad under Creative Commons: Erkännande-Ickekommersiell-Inga bearbetningar