Enligt den biogeniska teorin har jordens petroleumtillgångar bildats då förhistoriska alger och plankton lagt sig på sjöars och havs botten under syrefria förhållanden. Detta organiska material har begravts under stora lager sediment. Genom högt tryck och hög temperatur har det omvandlats kemiskt, först till kerogen och sedan genom ytterligare tryck och värme till kolväten i gas- eller vätskeform (det vill säga naturgas och petroleum).
Växter på land bildar dock främst kol. Stora delar av jordens kolreserver härstammar från den geologiska perioden karbon.
The abiotic theory is controversial and has a number of flaws, however. For one, it doesn’t predict deposits of oil as well as the biogenic theory does. Oil deposits are typically found close to fault lines because that’s where two tectonic plates meet, and ocean sediments can be more easily buried in those regions. Also, oil deposits usually have biomarkers, little telltale signs of life. For the abiotic theory to work, those markers have to be explained somehow; it fills in that hole by suggesting microbes must have been feeding on the petroleum. The biogenic theory easily explains why such evidence of life would be present, however, given that they originated from the remains of once-living plants.
Hastighet Ekin DEkin Förbrukning
5 1.4 19.6
25 6.9 476 456.4 0.028
.
60 16.7 2790 80 22.2 4930 2140 0.13
km/t m/s kJ kJ liter dieselolja
The relative proportion of 13C in our atmosphere is steadily decreasing over time. Before the industrial revolution, d13C of our atmosphere was approximately -6.5‰; now the value is around -8‰. Recall that plants have less 13C relative to the atmosphere (and therefore have a more negative d13C value of around -25‰). Most fossil fuels, like oil and coal, which are ancient plant and animal material, have the same d13C isotopic fingerprint as other plants. The annual trend–the overall decrease in atmospheric d13C–is explained by the addition of carbon dioxide to the atmosphere that must come from the terrestrial biosphere and/or fossil fuels. In fact, we know from D14C measurements, inventories, and other sources, that this decrease is from fossil fuel emissions, and is an example of the Suess Effect.
Recall that the Suess Effect is the observed decrease in d13C and D14C values due to fossil fuel emissions, which are depleted in 13C and do not contain 14C.
Denna sida frÃ¥n NRCF är licensierad under Creative Commons: Erkännande-Ickekommersiell-Inga bearbetningar