Vill du ha ett snabbt svar - sök i databasen:

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

14 frågor / svar hittades

Är det en fördel att vara tung om man är störtloppsåkare?

Fråga:
I slalomsammanhang får man av s.k. experter höra: "Det är bra att du har lagt på dej några extra kilon, för då går det ju fortare." I praktiken tycks det vara så. Men energiprincipen säger ju att massan är oväsentlig (under förutsättning att vi endast har Wp och Wk som växelverkar).
Den enda förklaring jag har till fenomenet har att göra med Newtons första princip - en tröghetsfråga alltså. Den tyngre alpinisten besitter ju en större rörelsemängd.
Har du några förklaringar?

/Staffan  L,  Tekniskt/Naturvet. BasÃ¥r,  SkellefteÃ¥ 1997-11-26
Svar:
Detta påstås ofta av kommentatorer, men ligger det något i det?

Det mest väsentliga (förutom skicklighet att åka skidor) är luftmotståndet (friktion). Det är i princip luftmotståndet som bestämmer hastigheten. Vad händer då med en skidåkare som lägger på hullet? Jo han eller hon blir lite större och lite tyngre. Men eftersom volymen av en ideal klotformig skidåkare går som r3 medan ytan går som r2, så ökar massan (volymen) snabbare än ytan med faktorn r. Kraften som drar skidåkaren nedåt är ju proportionell mot massan, medan kraften som bromsar (luftmotståndet) är proportionell mot ytan. Vi får allstå en större kraft för den tyngre skidåkaren, medan luftmotståndet inte ökar lika mycket. Så om allt annat är lika så har en tyngre åkare en fördel.

Vad gäller glidfriktion mellan snön och skidorna är den propotionell mot normalkraften som är proportionell mot massan. För denna har alltså skidåkarens vikt ingen betydelse eftersom både friktionen och den dragande kraften är proportionell mot massan.

Se även fråga [20012].
Länkar: http://www.nbclearn.com/portal/site/learn/resources
/PE 2002-10-15


Varför har man bredare däck vid fartsporter som
t.ex. Formel 1?

Gymnasium: Kraft-Rörelse - friktion, idrottsfysik [1046]
Fråga:
Jo jag undrar varför man har bredare däck vid fartsporter som
t.ex. formel 1? Jag förstår att det har med väghållningen att
göra men jag tycker att det borde bli en kortare bromssträcka
om du har breda däck än om du har ett par smala däck som utsätts
för samma normalkraft och är tillverkade i samma meterial. Stämmer
inte det?


Ett annat ex. kan ju vara vem som har kortast startsträcka
om förutsättningen är att det inte får spinna loss någon gång.

/Arvid  M,  ABB Industrigymnaium,  VästerÃ¥s 1998-02-20

Svar:
Enligt den förenklade teorin för friktion som presenteras i skolfysiken så beror inte friktionskraftens storlek på kontaktytans area utan endast på normalkraftens storlek. I praktiken är det däremot så att friktionskraften ökar med arean. Breda däck ger större friktionskraft och bättre väghållning. Med dubbar blir effekten ännu större eftersom ett bredare däck hat plats för fler dubbar.

Dessutom förkortas bromssträckan och accelerationen blir bättre. Friktionstalet för kontakt gummi - asfalt är ca 1,5 för bra gummiblandningar och varma däck.

Friktionen mot asfalt är, kanske lite förvånande, större om man har omönstrade däck än om man har mönstrade. Anledningen till att däck på vanliga bilar är mönstrade är framför allt för att eventuellt vatten skall komma undan. Tänk på formel-1 bilar: vid torrt väder använder man omönstrade däck, men om det börjar regna måste man omedelbart byta annars kommer bilarna att vattenplana av banan.

Fundera: Varför har man vingar på formel 1-bilar?

Fundera: Hur fort kan man köra genom en kurva med en radie på 100 m? Antag att normalkraften är lika stor som tyngdkraften.
/GO 2003-02-02


Laboration om tröghetslagen och friktion

Fråga:
I ett laboration som vi gjorde i skolan, vi skulle visa att Kraftekvationen gäller där vi använde tyngden av massan m för att sätta fart på vagnen med massan M. Med hjälp av två ljusportar bestämde vi vagnens hastigheter vid två tillfällen. Sedan bestämde vi värden på den accelererande kraften (dragkraften) samt produkten av massan och accelerationen. Vi fick då olika värden på kraften och produkten av massa och accelerationen. Min fråga är att vilket är förklaringen till avvikelsen mellan värden på kraften och produkten av massan och accelerationen??? Och hur kan man redovisa för de korrigeringar som bör göras??
/Sara  H,  Birgitta,  Linköping 2005-02-24
Svar:
Hej Sara!

Ni har gjort ett experiment för att undersöka tröghetslagen F=ma, Newtons andra rörelselag. Med de givna förutsättningarna väntar man sig idealiskt följande samband:

F = mg = (m+M)a

där mg är den accelererande kraften och m+M är massan som accelereras.

För det första är alla mätningar behäftade med osäkerheter (i bland oegentligt kallade fel). För försöket ni gjort kommer det sedan säkert in en systematisk felkälla: friktionen. Om ni kan mäta denna på ett oberoende sätt skulle ni kunna korrigera för den.

Möjligen skulle man till en del kunna få en uppfattning om friktionen genom att variera tyngden m. I en första approximation beror friktionen av M (proportionell mot normalkraften), och bör alltså bli av relativt mindre betydelse om m (och därmed kraften) ökas.

På min begäran skickade du följande mätdata (presentationen något modifierad):

m (kg) M (kg) a (m/s2) M/m
0.04 0.353 1.01 8.83
0.05 0.353 1.13 7.06
0.02 0.353 0.468 17.7
0.02 0.516 0.332 25.8
0.02 0.580 0.224 29.0
0.03 0.353 0.693 11.8
0.03 0.522 0.481 17.4

Utan friktion väntar vi oss att accelerationen a ges av

a = g/(1+M/m)

Tar vi hänsyn till en friktionskraft fMg får vi

a = (g-fMg/m)/(1+M/m)

Detta samband är plottat i nedanstående figur för f=0.5 och 1%.
Dina uppmätta data uppvisar lite spridning, men jag tycker att de stämmer relativt bra med kurvan för f=0.5%. Olika värden på M har markerats med olika symboler, men jag kan inte se någon systematik.

För att förbättra experimentet skulle man kunna ta fler mätpunkter för att få en bättre uppfattning om de tillfälliga mätfelen i bestämningen av accelerationen.

Question Image

/Peter E 2005-02-24


Varför kastar man en golfboll längre än vad man kastar en pingisboll?

Grundskola_7-9: Kraft-Rörelse - friktion [14895]
Fråga:
Varför kastar man en golfboll längre än vad man kastar en pingisboll?
/Beatrice  N,  Nya läroverket,  LuleÃ¥ 2006-10-19
Svar:
Beatrice! Eftersom en golfboll och en pingisboll är ganska exakt lika stora och har samma form, så är det ganska lätt att förklara. Om vi antar att att utgångshastigheten är lika, så är kraften som orsakas av luftmotståndet lika. En lätt boll (pingisboll) påverkas mer av denna kraft än en tyngre boll (golfboll), vilket innebär att den lättare bollen bromsas snabbare än den tyngre.

För den som vill ha formler gäller att

F = ma

och alltså om kraften F är konstant minskar accelerationen (uppbromsningen) när massan ökar.

Luftmotståndet är för för höga hastigheter proportionellt mot hastigheten i kvadrat (v2) och för lägre hastigheter proportionellt mot hastigheten (v). Länk 1 är en avancerad artikel på engelska.
Länkar: http://en.wikipedia.org/wiki/Air_resistance
/Peter E 2006-10-20


Beror friktionskraften av kontaktytan?

Fråga:
Fick en förfrågan om friktionskraften är areaberoende.
Känns som att det borde vara så att större area ger större friktion. Fast om jag kollar på formeln friktionskraften = friktionskoefficientennormalkraften finns inget som visar på att friktionskraften skulle vara areaberoende.
Är friktionskraften areaberoende? Hur förklarar man det?
Hur förklarar man att vilofriktionen är större än glidfriktionen?
/Marianne  A,  Ehrensvärdska gymnasiet,  Karlskrona 2006-10-31
Svar:
Marianne! Friktionskraften är ett mycket komplicerat fenomen när man djupdyker i det, men standardmodellen är mycket enkel: friktionskraften f är proportionell mot normalkraften N:

f = mN

där proportionalitetskonstanten m kallas friktionskoefficient. Som du ser är det inget beroende av arean. Att det är så kan man intuitivt förstå eftersom om vi t.ex. dubblar arean så blir normalkraften per ytenhet hälften så stor, så resultatet blir oförändrat. Proportionaliteten mellan friktionskraften och normalkraften kan man förstå om man tänker på att den reella kontaktytan (utgörs av några atomer som sticker ut) är ganska liten. Om man ökar normalkraften så kommer atomerna att flytta sig lite, och fler atomer kommer i kontakt med varandra. Detta gör att friktionen ökar. Att den ökar linjärt kan enklast betraktas som ett experimentellt faktum.

Bilderna nedan (från Hyperphysics, länk 1) visar vilofriktion (statisk) och glidfriktion (kinetisk). Den förra är som du säger större. Anledningen är komplex och beror av materialet, men det har att göra med att knöligheter fastnar i varandra när klossen ligger still, medan denna effekt minskar om klossen rör sig.

I den nedre figuren visas friktionskraften f som funktion av den drivande kraften F. Klossen väger 10 kg, så normalkraften är hela tiden c:a 100 N. Till vänster (i origo) är friktionskoefficienten noll (ingen drivande kraft att motverka). Friktionskoefficienten ökar när man går åt höger tills den blir 0.5. Då övervinns friktionskraften och klossen börjar röra sig. Observera att så snart klossen sätts i rörelse så minskar friktionskoefficienten till (i det här exemplet) 0.4.

Se vidare länk 1 och friction för mer om friktion än du någonsin vill veta :-).

Question Image

Länkar: http://hyperphysics.phy-astr.gsu.edu/hbase/frict.html
/Peter E 2006-10-31


Om friktion

Grundskola_7-9: Kraft-Rörelse - friktion, friktionskoefficient [16025]
Fråga:
Vad menas med friktion och när är den är bra eller dålig ?
/Matilda  L,  sofiedalskolan,  gävle 2009-03-22
Svar:
Matilda! Nationalencyklopedin definierar friktion som


"motstånd mot glidning mellan två föremål i kontakt. Friktionskraften är riktad motsatt glidningen, normalt lika med friktionskoefficienten gånger den sammanpressande kraften mellan föremålen och oberoende av kontaktytans storlek och av glidfarten. Friktion orsakas av kraftverkan mellan atomer i ytskikten hos föremålen och studeras inom tribologi. Friktion är till nytta (minskar halka, t.ex. mellan bildäck och vägbana), men medför förluster i tillgänglig energi när högvärdig rörelseenergi omvandlas till värme (friktionsförluster)."


Wikipedia säger:

Friktion eller gnidningsmotstånd har att göra med hur ytan på materialet är beskaffad. En slät och jämn yta som på is ger mindre friktion än en skrovlig och knottrig yta som på betong. Det beror helt enkelt på att utsprång på den ena kroppen tar i fördjupningar på den andra, så att det behövs extra kraft för att få dem loss igen. De elektromagnetiska krafterna mellan atomer spelar emellertid också en betydande roll. När två kroppar är i nära kontakt håller atomerna fast vid varandra och verkar då i motsatt riktning mot rörelsen. På så sätt omvandlas kinetisk energi (rörelseenergi) till värme. (Friktion)


Om friktion är bra eller dålig? Jag antar du menar om vi har nytta av den eller tvärtom. Om inte friktionen funnits hade du inte kunnat gå, du hade ramlat omkull hela tiden. Å andra sidan hade bilar dragit mindre bensin - men inte kommit någonstans! Så det är nog väl att friktion finns :-)!

Man kan efter behov öka friktionen - för bilar med dubbdäck och sandning av vägar - eller minska friktionen - med olja i en bilmotor. Dessa åtgärder ändrar friktionskoefficienten. Man kan även öka friktionen genom att öka normalkraften, t.ex. med vingar eller spoilers på en formel 1 bil (downforce).

Se fler frågor om friktion under nedanstående länk. Se även Friktion och Friction. Se fråga [14921] för begreppet friktionskoefficient.

Question Image

/Peter E 2009-03-23


Varför snurrar en boll åt andra hållet efter att den studsat i golvet?

Grundskola_7-9: Kraft-Rörelse - friktion, skruvad boll [16495]
Fråga:
Varför snurrar en boll åt andra hållet efter att den studsat i golvet? Alltså om du skruvar den åt höger kommer den efter studsen att snurra åt vänster. Vi har provat flera gånger och det blir lika dant. Vår lärare kunde inte förklara varför men tipsade oss att skriva hit och fråga.
/kerstin  Ã,  kilafors skola,  kilafors 2009-10-17
Svar:
Kerstin! Det beror på bollens och golvets egenskaper om snurr-riktningen ändras. Om friktionen boll-golv är stor kan rotationsriktningen säkert ändras.

Se nedanstående figur. Bollen roterar på nervägen medurs. Vi har en normalkraft vinkelrätt mot golvet och en friktionskraft parallellt med golvet och motriktad rotationen. Vi kallar resultanten till dessa två krafter för F. Eftersom F inte går genom masscentrum skapar F ett rotationsmoment Fr. Detta är motriktat den urspungliga rotationen. Om rotationsmomentet är tillräckligt stort (dvs friktionen är tillräckligt stor) kommer det att orsaka att bollens rotation vänder.

Detta är en mycket idealiserad bild - i verkligheten måste man ta hänsyn till att bollen deformeras och att en del av rörelseenergin av inre friktion förvandlas till värme.

Question Image

/Peter E 2009-10-19


Hur omvandlas bilens bränsle till rörelseenergi?

Fråga:
Hur omvandlas bilens bränsle till rörelseenergi och kan man ta vara på värmeenergin som bildas vid inbromsning och i så fall används den metoden idag?
Hur fungerar bromsar och styrsystem, med och utan servo?
/Alida  F,  UppgÃ¥rdskolan,  Stenhamar 2009-10-27
Svar:
Alida! Det är mycket omfattande frågor du ställer och de är delvis mer teknologi än fysik. Jag kommer att behandla några av de fysikaliska aspekterna i din fråga.

Förbränningsmotorer

Bilens bränsle förbränns tillsammans med syre från luften i en cylinder. Varm gas tar mer plats än kall gas och expansionen driver en kolv. Via en vevaxel omvandlar man fram-och-tillbaka rörelsen till rotation som kan driva hjulen, se nedanstående animering från Wikimedia Commons (Engine). Observera att det är inte den höga temperaturen i sig som driver förbränningsmotorn utan skillnaden i temperatur mellan de varma och kalla delarna. En förbränningsmotor måste alltså alltid kylas - oftast med vatten. I ett kraftverk eller fabrik kan man använda kylvattnet för uppvärmning, men i en bil är det varma kylvattnet en ren energiförlust. Effektiviteten (verkningsgraden) för en förbränningsmotor (producerat mekaniskt arbete/(bränslets energiutveckling) är av storleksordningen 40% (Internal_combustion_engine).

Bromsar

Den traditionella konstruktionen för bromsar är två plattor eller cylindrar som bringas i kontakt och genom friktion förvandlar mekanisk energi till värme. Normalt är denna värme en ren förlust.

Det finns emellertid bromsar som återanvänder bromsenergin.

Om bilen drivs av en elmotor och batterier kan man använda motorn som broms. Elmotorn blir i stället en generator som producerar ström som laddar patterierna. Det är alltså det mekaniska motståndet från generatorn (Lenz's_law) som ger bromsverkan. En stor del av energin kommer till nytta från det uppladdade batteriet. Se Regenerative_brakeThe_motor_as_a_generator.

En annan lösning är att använda sig av ett svänghjul. Ett svänghjul (se Flywheel) är en mekanisk anordning vars syfte är att lagra rörelseenergi genom att en tung cylinder sätts i rotation. För ett fordon överför man rörelseenergi till rotationsenergi hos svänghjulet. Denna rotationsenergi kan sedan återanvändas för acceleration. Systemet används bland annat av några stall i Formel 1. Systemet kallas KERS (Regenerative_brakeKinetic_Energy_Recovery_Systems). Man kan med detta system få några extra hästkrafter för en snabb omkörning. Svänghjulet laddas alltså upp av uppbromsningarna. Anledningen till att inte alla Formel 1 stall använder KERS är att systemet är ganska tungt (c:a 25 kg) och därför medför begränsningar i den optimala viktfördelningen i bilen. (Kommentar: Systemet var förbjudet under säsongen 2010, men är tillåtet från säsongen 2011.)

Hydraulik/servosystem

Hydraulik är ett system med två kolvar med olika diameter som är förbundna med en slang innehållande en vätska, vanligen olja. Vätskan är inkompressibel (kan inte tryckas ihop), och man skapar ett övertryck genom att trampa på en pedal. Om kolvarnas ytor förhåller sig som 1/10 får man en förstärkning av kraften med en faktor 10. På samma sätt som för en hävstång betalar man kraftförstärkningen med att den mindre kraften verkar över en längre sträcka, se Hydraulik.

Ett servo-system skall enligt en strikt definition (Servomechanism) även innehålla en extern drivkälla (t.ex. vakuum från motorn) och återkoppling.

Question Image

/Peter E 2009-10-27


Vad kostar det i bränsle att öka hastigheten för en lastbil från 60 till 80 km/tim?

Fråga:
Jag skall hålla en utbildning för lastbilschaufförer. Hastigheten och förmågan att planera sin körning är alltid ett hett ämne som kräver konkreta svar.

Fråga: Vad kostar det i energi (diesel) att öka hastigheten från 60 till 80 km/tim resp från 5 till 25/km/tim. Fordonets totalvikt 60 ton resp 20 ton.
Konsekvens: Om man bromsar från 80 till 60 km/tim förlorar man i princip lika mycket i rörelseenergi som det kostat att accelera från 60 till 80 km/tim.
/Klas  G,  Brantevik 2009-11-09
Svar:
Klas! Eftersom man normalt kör ganska långa sträckor så är det inte accelerationerna som är avgörande utan friktionsförluster - inklusive luftmotstånd. En personbil har en optimal hastighet på c:a 70-90 km/t, se länk 1 och 2 nedan. I länk 1 finns ett diagram på bränsleeffektivitet och tips för effektiv körning.

Om hastigheten är v så är luftmotståndet (bromsande kraften)

Fluftmotstånd = konstantv2

(se Drag_(physics)). Effekten går som Fv, så förlusterna från luftmotståndet går som v3. Å andra sidan kör man längre per tidsenhet, så slutresultatet blir att effektiviteten minskar som v2.

Det är klart att det optimala är att köra med så konstant hastighet som möjligt. Om man inte har KERS (se fråga 16552 nedan) så är ju bromseffekten rena förluster.

Eftersom rörelseenergin är mv2/2, kostar det mycket mer energi att accelerera från 60 km/t till 80 km/t än att accelerera från 5 km/t till 25 km/t. Kraften som krävs för accelerationen är (bortsett från luftmotståndet) densamma, men kraften verkar vid den högre hastigheten på en längre sträcka, så den erfordrade energin blir större.

Bränsleekonomi för en bil är ett ganska komplicerat ämne med många parametrar, så man kan inte räkna ut bränsleförbrukningen med hjälp av en enkel formel. Det bästa är att pröva själv - vissa bilar visar den ögonblickliga bränsleförbrukningen så för dessa är det enkelt.

Låt oss avslutningsvis beräkna hur mycket diesel det kostar att accelerera en 20 tons lastbil från 5 till 25 km/t och från 60 till 80 km/t. Energiutbytet för dieselolja är enligt Energy_content_of_biofuel 40.3 MJ/l. Om vi räknar med en effektivitet på 40% blir energiutbytet 16100 kJ/l. Detta värde har använts för att räkna ut förbrukningen i den sista kolumnen.

Hastighet Ekin DEkin Förbrukning
5 1.4 19.6
25 6.9 476 456.4 0.028
.
60 16.7 2790 80 22.2 4930 2140 0.13
km/t m/s kJ kJ liter dieselolja

Det tar alltså hisnande 0.13 l diesel att accelerera vår 20 tons lastbil från 60 till 80 km/t!
Länkar: http://eartheasy.com/live_fuel_efficient_driving.htm  |  http://www.newton.dep.anl.gov/askasci/eng99/eng99540.htm
/Peter E 2009-11-09


Vad händer när man "curlar" i curling?

Gymnasium: Kraft-Rörelse - friktion, idrottsfysik [16966]
Fråga:
Hej! Skulle vilja veta vad som händer när man "curlar" i curling? Vad är det som gör att stenen glider bättre då?
/Hannes  H,  Alströmergymnasiet,  AlingsÃ¥s 2010-02-28
Svar:
Hannes! Intressant och aktuell fråga med tanke på lag Anette Norbergs insats i OS i Vancouver. Detaljerna för varför stenen "curlar" (avlänkas åt höger eller vänster i förhållande till den ursprungliga riktningen) är komplicerade och även kontroversiella. Vi behandlar detta i avsnittet mot slutet av svaret. Först en video om curling:



Vissa saker är man emellertid helt överens om:

1 Sopandet framför stenen skapar genom friktion värme som smälter isen och ger ett tunnt lager vatten. Detta minskar friktionen mellan stenen och isen.

2 Minskningen i friktion genom sopning medför dels att stenen går längre sträcka för en viss utgångshastighet och dels att den curlar (svänger) mindre.

3 Stenens curlande orsakas av friktionen mot isen och stenens rotation. Observera att man alltid sätter lite rotation på stenen: moturs om man vill att den curlar åt vänster och medurs om man vill ha en högerböj.

Till skillnad från andra sporter (t.ex. golf, bowling, skytte) kan man alltså påverka projektilens rörelse efter det att man släppt iväg den. Svårigheten är att man alltså får två effekter när man sopar: längre bana och mindre curl, och man måste besluta om en optimal kompromiss mellan effekterna.

SVTs kommentatorer vid OS-sändningarna från Vancouver spekulerade om vad resultatet skulle bli om det svenska damlaget skulle spela mot det svenska herrlaget. Man kom fram till att herrarna antagligen skulle vinna, men förklarade inte varför. Jag tror också herrarna skulle vinna helt enkelt för att de är tyngre och starkare, och kan på så sätt kontrollera stenen mer. Om man tittar på statistik för absoluta topp-curlare så har män c:a 90% och kvinnor c:a 80% lyckade stenar (slag).

Detaljerad förklaring till att stenen curlar

Låt oss börja med att göra ett enkelt experiment som du kan göra hemma. Ta ett köksglas (inte mormors finaste glas!) och leta upp ett jämnt, plant underlag, t.ex. en köksbänk. Vänd glaset upp-och-ner och skjut det längs bänken samtidigt som du sätter rotation på glaset, se vänstra bilden i nedanstående figur från Curling Science. Om du som i figuren roterar glaset medurs, så kommer glaset att avlänkas till vänster. Detta resultat är mycket förvånande för en curlare eftersom en curlingsten skulle avlänkas åt motsatt håll, se den högra bilden.

Varför reagerar glaset och curlingstenen olika på rotationen? Låt oss börja med att förklara varför glaset rör sig åt vänster. När glaset glider över bänken bromsas det up av en friktionskraft riktad rakt bakåt. Eftersom glasets tyngdpunkt ligger över bänkens plan, så kommer det att utsättas för ett vridmoment riktat bakåt. Trycket på framkanten av glaset blir då högre än trycket på bakkanten. Detta är samma effekt som att en bromsande bil får nosen nertryckt och en accelererande bil får nosen lyft. Eftersom glaset roterar får vi även en friktionskraft riktad åt vänster (friktionskraften är alltid motriktad rörelsen) i glasets framkant och en friktionskraft riktad åt höger i glasets bakkant. Eftersom normalkraften Fn enligt ovan är större i framkanten än i bakkanten blir friktionen större (se nedanstående formel), och vi kommer att få en nettokraft riktad åt vänster.

Varför uppför sig curlingsten annorlunda än glaset? För det första bör man veta att bottenytan på en curlingsten inte är plan, utan den har en skålformad fördjupning i mitten. Anläggningsytan mot isen är alltså en smal ring precis som för det upp-och-nervända glaset.

Skillnaden är att is smälter om den utsätts för högt tryck, se fasdiagrammet i fråga [12715]. Detta är skälet till att en kälke eller skridskor glider så bra på is - friktionen minskas genom ett tunnt vattenskikt. Precis som glaset utsätts stenen för en större normalkraft i framändan än i bakändan. I fallet curlingsten orsakar det högre trycket i framändan att friktionskoefficienten m minskar. Friktionskraften är ju

F = mFn (1)

Eftersom minskningen i friktionskoefficienten är större än ökningen i normalkraften kommer friktionskraften att bli mindre i framändan. Stenen kommer då att i stället böjas av åt höger.

Eftersom förklaringen bygger på att en del is smälts, så bör det ha betydelse vilken temperatur isen har. Om isens temperatur är mycket låg borde man vänta sig att den har svårare att smälta och att friktionen skulle bli större. I länk 1 sägs det om Scotts (Robert_Falcon_Scott) sydpolsexpedition:


Another key factor when considering the slipperiness of ice is temperature. Captain Scott noted during his Antarctic travels that once the temperature fell below -35 degrees C it become incredibly hard to pull sleds through the snow. This was because the heat produced by the friction between sled and snow was not enough to warm the ice to its melting point (0 degrees C) so no lubricating melt water was produced. Scott and his companions may as well have been pulling their sleds through sand. The closer the temperature of the ice is to its melting point the more melt lubricant is produced by sliding and the more slippery ice becomes.


I What Puts the Curl in a Curling Stone? finns ovanstående förklaring till curlande och referenser till fyra vetenskapliga artiklar från Canadian Journal of Physics om olika aspekter på curling. The motion of curling rocks: Experimental investigation and semi-phenomenological description är en senare artikel av samma författare. I den visas tydligt (men ganska svårgenomträngligt) att ovanstående modell är i stort sett korrekt även om vissa detaljer är oklara. Speciellt gäller detta hur stenen växelverkar med underlaget: växelverkar den med en fix isskiva eller med det rörliga vattnet under stenen? En annan effekt som är svår att förklara är att storleken av curl är i stort sett oberoende av stenens rotationshastighet. Intuitivt väntar man sig att en sten som roterar snabbare curlar mer.

I artikeln Comment on the motion of a curling rock framförs en annan modell där inte "våt friktion" (minskande friktionskoefficient) utan "torr friktion" (formel 1 ovan med konstant friktionskoefficient) används. Artikeln är emellertid inte av god kvalité, och slutsatserna är dubiösa.

Tester av modellerna

Det vore intressant att testa hur glaset uppför sig på is. Är det någon som har tillgång till mycket jämn is skulle jag vara tacksam om ni ville kummunicera era observationer till mig.

Ett annat experiment som är svårare att åstadkomma är att be ismakarna skruva upp kylningen till max. Skulle det gå att få ner temperaturen så mycket att man inte får någon smältning? Om det går skulle man få några mycket förvånade curlare: stenarna skulle bli mycket korta och curla åt fel håll :-)!

Sopforskning

Sopandet är uppenbarligen en mycket viktig del av curling eftersom detta är lagets möjlighet att påverka stenens bana sedan den släppts. Curling, Olympic training and ice friction fundamentals är ett anslag till några forskare för att förbättra chanserna för det brittiska damlandslaget att försvara sitt guld från 2002 i Turin 2006. Tydligen räckte inte pengarna, för som känt så vann ju lag Norberg!

Vidare studier

Det finns som synes mycket i curling som är av fysikaliskt intresse, och då har vi inte tagit upp kollisioner mellan stenar och bevarandet av rörelsemängd och rörelseenergi.

För mer om curling se Wikipedia-artiklarna på engelska (Curling) och på svenska (Curling). Fler videos om olympiska vintersporter finns här: Science of the Olympic Winter Games. Länk 2 ger en alternativ förklaring.

Question Image

Länkar: http://www.research.ed.ac.uk/portal/en/projects/friction-on-icea-thermographic-analysis-of-surface-temperature(b3e37385-72c6-41bb-af3f-3440d39dcad2).html  |  http://www.forskning.se/nyheterfakta/nyheter/pressmeddelanden/curlingstenensexaktarorelserkartlagda.html
/Peter E 2010-03-01


Sida 1 av 2

| Nästa

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

** Frågelådan är stängd för nya frågor tills vidare **
Länkar till externa sidor kan inte garanteras bibehålla informationen som fanns vid tillfället när frågan besvarades.

Creative Commons License

Denna sida frÃ¥n NRCF är licensierad under Creative Commons: Erkännande-Ickekommersiell-Inga bearbetningar