Vill du ha ett snabbt svar - sök i databasen:

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

3 frågor / svar hittades

Grundskola_7-9: Energi - nöjesparksfysik [7528]
Fråga:
Jag åkte i somras fritt fall på Gröna Lund och kom att tänka på följande:
Antag att den fallande soffan bromsas upp av en permanent magnet innan den
når marken, dvs magneten utför ett arbete genom att påverka soffan med
kraft som bromsar in den. Min fråga är nu, varifrån kommer energin att
göra detta. Är det en magnetisk energi lagrad i magneten, och varför i
så fall minskar inte denna då magneten gång på gång utför arbete.
/Oleg  H,  Stockholm 2001-02-16
Svar:
Energin finns ju som rörelseenergi hos soffa och den person som faller med.
Vid inbromsningen omvandlas rörelseenergin till värmeenergi. Vi vet inte hur
bromsarna är konstruerade i detta fall. Man kan tänka sig en
magnetbroms där en elektromagnet reglerar en sorts skivbroms.
Värme alstras genom friktion.
Man kan tänka sig en virvelströmsbroms, där en magnet alstrar
virvelströmmar i en metallskena. Värme alstras med ohmska förluster.

Se även Fritt_fall_(Gröna_Lund).
/KS/lpe 2001-02-19


Varför flyger man utåt om man åker fortare i en karusell som ser ut som Kättingflygaren på Gröna Lund?

Fråga:
Varför flyger man utåt om man åker fortare i en karusell som ser ut som Kättingflygaren på Gröna Lund?
/Johanna  2009-03-09
Svar:
Johanna! Karusellen ser ut som den på bilden nedan från Chair-O-Planes.

För att sitsarna med (eller utan) passagerare skall röra sig i en cirkelbana erfordras en kraft riktad mot centrum. Denna s.k. centripetalkraft ges av

Fr = mv2/r

Om rotationshastigheten v ökar ökar radien r och vinkeln a mellan vertikalplanet och kättingen minskar för att centripetalkraften skall öka, se figuren nedan.

Det är två krafter som tillsammans orsakar nettokraften Fr (de två steckade krafterna i figuren):

1 Spänningen i upphängningskedjan FF riktad snett uppåt i kedjans riktning.

2 Tyngdkraften FG = mg riktad rakt nedåt.

Från triangeln med FF och Fr får man

tan a = Fr/FG

dvs

Fr = tanaFG = tanamg

Men enligt ovan var ju

Fr = mv2/r

dvs

mv2/r = tanamg

eller

v2 = rtanag

Vi ser för det första att sambandet inte beror av massan m.

Om avståndet från rotationscentrum till upphängningspunken är r0 blir radien

r = r0 + lsina

där l är kedjans längd. Vi får alltså till slut sambandet

v2 = (r0 + lsina)tanag

Vi ser att om hastigheten v ökar så måste även vinkeln a öka. Ekvationen ovan är svår att lösa exakt, men i appleten under länk 2 kan man variera parametrarna och se vad som händer.

Se Slagkraft - Naturvetenskap på Liseberg för mer om Kättingflygaren och andra Liseberg-attraktioner.

Se även Kättingflygare.

Question Image

Länkar: http://www.walter-fendt.de/ph14d/karussellmath.htm  |  http://www.walter-fendt.de/ph14se/carousel_se.htm
/Peter E 2009-03-09


Berg-och-dal bana med loop

Fråga:
Frågan gäller en berg-och-dal bana med en loop.
Hur stor är centripetalaccelerationen längst upp på karusellen? Var är centripetalaccelerationen som störst?
/Ali  z,  BORGARSKOLAN,  MALMÖ 2009-11-05
Svar:
Ali! Jag hade lite svårt att förstå din fråga. Det du frågar om är nog en berg-och-dalbana (Roller_coaster, Roller_coaster_elements) med en loop (Vertical_loop), se nedanstående foto av den första loopen (Coney Island, New York) från Wikimedia Commons. Jag har kortat ner din fråga något.

Jag tänkte ta upp ett par saker av vad jag tror du frågade om: hur räknar man ut vagnens hastighet i olika punkter och hur stora är g-krafterna? Sajten Lisebergs-Fysik innehåller mycket mer information bland annat om berg-och-dal banor.

För att få någon idé om storlekar, hastigheter etc, så har jag tittat på data från ett typexempel, länk 1.

En klassisk berg-och-dal bana fungerar så att vagnen dras upp till maxhöjden, och får sedan rulla i princip fritt ner och upp längs spåret. En förenklad version visas i figuren nedan. Vagnen startar med hastigheten 0 från punkt 1. Den accelereras nedför backen och går runt loopen. I verkligheten är naturligtvis loopen lite skruvad så att utgången är vid sidan av ingången.

Om vi antar att det inte finns några friktionsförluster kan vi använda energiprincipen för att räkna ut hastigheten i olika punkter: Totala energin = potentiell energi + kinetisk energi, Epot + Ekin = konstant.

Vagnens massa är M kg och vi räknar med tyngdaccelerationen g=10 m/s2. Radien på loopen är r=5 m.

I tabellen nedan listas värden för punkterna 1-4. De olika kolumnerna är:

Nr Punkt nummer

h Höjd över nollnivån (lägsta nivån [punkt 2] har h=0)

Epot Potentiell energi: Mgh

Ekin = 160M - Epot

v2 räknas ut från Ekin = Mv2/2

v räknas ut från v2

v2/r är centripetalaccelerationen i cirkelbanan i m/s2

C acc är centripetalaccelerationen uttryckt i g

Totalt g är totala g-kraften om vi även tar tyngdaccelerationen i beaktande, se vektordiagrammen längst ner i figuren. I stället för att involvera krafter är det i detta fallet enklare att räkna med accelerationer. Tyngkraften motsvaras då av en acceleration riktad rakt upp med beloppet 1g (de små svarta pilarna i figuren).


Nr h Epot Ekin v2 v v2/r C acc Totalt g
1 16 160M 0 0 0
2 0 0 160M 320 18 64 6.4 7.4
3 5 50M 110M 220 15 44 4.4 4.5
4 10 100M 60M 120 11 24 2.4 1.4
m J J (m/s)2 m/s m/s2


Vi kan räkna ut vad starthöjden skulle vara om centripetalaccelerationen i punkt 4 skulle vara g, dvs passagerarana skulle vara tyngdlösa:

v2/r = 10 -> v2 = 105 = 50

Ekin = Mv2/2 = M50/2 = 25M

Potentiella energin 25M motsvarar höjden 2.5 m, så starthöjden behöver vara 12.5 m för att centripetalaccelerationen i punkt 4 precis skall kompensera tyngaccelerationen.

Kommentarer

1 Maximala g-kraften i detta exemplet är 7.4 (i punkt 2) medan det i länk 1 sägs att den maximala g-kraften är 4. Ett skäl till avvikelsen kan vara att loopen inte vilar på lägsta nivån eller har större radie. Ett annat skäl är att man gör inte loopen cirkulär, utan päronformad med tjocka änden nedåt. Man får då en större krökningsradie där vagnen rör sig snabbast, och en mindre radie där den rör sig långsammast. Man jämnar alltså ut g-kraftena i loopen.

2 Det kan tyckas farligt att vagnen är upp-och-ner i toppen av loopen. I moderna anläggningar (men inte i den avbildade nedan) har man dubbla skenor både över och under hjulen. Om alltså vagnen skulle tappa fart så att den inte går tillräckligt snabbt på toppen, så skulle den ändå hänga kvar i de extra skenorna.

Se även Berg-_och_dalbana.

Question Image

Länkar: http://www.rcdb.com/181.htm
/Peter E 2009-11-06


| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

** Frågelådan är stängd för nya frågor tills vidare **
Länkar till externa sidor kan inte garanteras bibehålla informationen som fanns vid tillfället när frågan besvarades.

Creative Commons License

Denna sida från NRCF är licensierad under Creative Commons: Erkännande-Ickekommersiell-Inga bearbetningar