Vill du ha ett snabbt svar - sök i databasen:

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

294 frågor / svar hittades

Pizzatransport

Fråga:
Eva köper två pizzor och transporterar hem dem i en kartong. Vilken pizza är varmast när hon kommer hem, den översta eller den nedersta?
/Sven  K,  2012-02-23
Svar:
Den undre pizzan är varmast. Anledningen är att bröd-delen av pizzan har dålig värmeledningsförmåga. Brödet verkar alltså som värmeisolation. Den nedre pizzan har ett lager bröd både nedåt och uppåt, medan fyllningen på den övre pizzan är fritt exponerad för omgivningen.

En del av avkylningseffekten är att vatten förångas från den varma pizzan. Eftersom detta kräver ångbildningsvärme kyls pizzan med samma effekt som gör att du fryser när du går ut ur duschen. Brödsidan innehåller mycket lite vatten medan fyllningssidan innehåller vatten. Det kan alltså hjälpa lite att täcka den övre pizzan med något vattentätt, t.ex. aluminiumfolie.

Den optimala transportmetoden är att lägga pizzorna med fyllningen mot varandra. Båda pizzorna omges då av ett värmeisolerande och torrt skikt. Nackdelen är att det blir kladdigt att separera pizzorna. Om man har pizzor med olika fyllning kan man emellertid få nya intressanta smakupplevelser. Och, framför allt, båda pizzorna är varma!

Se även fråga [16374].

Question Image

/Peter E 2012-02-23


Varför har gallium så låg smältpunkt?

Gymnasium: Värme - metall, smältpunkt [18885]
Fråga:
Hej! I vårt projektarbete jobbar vi med gallium. Denna metall har vissa speciella egenskaper, bl.a. en väldigt låg smältpunkt för att vara metall, men vad beror det på?

Har det att göra med atomernas struktur i ämnet eller varför har gallium en så låg smältpunkt medan andra metaller har det ej? Finns det en enklare förklaring eller blir den snabbt väldigt komplex?
/Gustaf  A,  Västerhöjdsgymnasiet,  Skövde 2012-12-13
Svar:
Gustaf! Gallium är förutom kvicksilver och ett par alkalimetaller den enda metallen som är flytande vid nära rumstemperatur. Smältpunkten är 30oC, se länk 1. Man kan se i nedanstående bild att fler metaller i närheten av gallium har relativt låga smältpunkter.

Wikipedia-artikeln om Gallium, Gallium, innehåller en diskussion om smältpunkten:

Gallium does not crystallize in any of the simple crystal structures. The stable phase under normal conditions is orthorhombic with 8 atoms in the conventional unit cell. Each atom has only one nearest neighbor (at a distance of 244 pm) and six other neighbors within additional 39 pm. Many stable and metastable phases are found as function of temperature and pressure.

The bonding between the two nearest neighbors is covalent, hence Ga2 dimers are seen as the fundamental building blocks of the crystal. This explains the drop of the melting point compared to its neighbor elements aluminium and indium.


Det väsenliga är om bindningar är kovalenta (när två atomer "delar" på elektroner). Dessa är riktningsberoende och tillåter inte stora avvikelser från optimal riktning och atomärt avstånd. Om det inte finns några riktningsberoende bindningar (eller som i galliums fall de är ganska svaga) kan atomerna glida förbi varandra och metallen uppför sig som en vätska.

Tänk dig två samlingar med stålkulor. Den ena lägger du i en hink och den andra i en plastpåse. Kulorna i hinken kommer att vara svårrörliga och uppföra sig som i en kristall. Kulorna i plastpåsen kan däremot röra sig ganska fritt och uppföra sig som en vätska.

Att gallium inte bildar stora stabila kristaller är ju en utmärkt förklaring till den låga smältpunkten - tills man ställer sig frågan varför gallium inte bildar kristaller. Det är här det blir svårt - det beror helt enkelt på hur de yttersta elektronerna är ordnade elektronskalen. Att förstå detta i detalj är inte lätt.

Question Image

Länkar: http://www.webelements.com/periodicity/melting_point/
/Peter E 2012-12-14


Kan man ha temperaturer lägre än absoluta nollpunkten?

Fråga:
Hej!
I dag, 7/1-13, rapporterar vetenskapsradion (SR P1) att man nått temperaturer lägre än absoluta nollpunkten. Det tycks man enligt inslag i frågelådan här ha nått tidigare, så vad är det egentligen nya för 2013?
Och finns det en absolut högsta temperatur? Frågesvaren med nummer 1262, 5956 och 9718 ger inte något entydigt svar, tycker jag.
Beror alltihop på hur man definierar absolutvärdena?
/Thomas  Ã,  Knivsta 2013-01-07
Svar:
Thomas! Jag tror att forskarna spetsat till sin beskrivning (länk 1) lite grann. För normala termodynamiska system är det translationsrörelsen hos atomer/molekyler som bestämmer temperaturen. Då finns i princip ingen begränsning uppåt av temperaturen och negativa absoluta temperaturer förekommer inte.

Enkelt uttryck är temperatur ett mått på partiklars (atomer/molekyler i en gas) slumpmässiga rörelse. Vid 0 Kelvin (-273.15oC) står partiklarna stilla och oordningen upphör. Inget kan alltså vara kallare än absoluta nollpunkten. Trots detta kan absoluta temperaturer vara negativa, se nedan.

Att man med negativa temperaturer kan åstadkomma att entropilagen inte gäller och därmed få verkningsgrader som är större än 1 tror jag inte på. De försök man gjort bygger på subtila kvantmekaniska effekter som man inte har i t.ex. en motor. Det nya är att man har experimentellt visat ett system med negativ temperatur.

Detta betyder inte att rapporten är fel eller ointressant.

Låt oss börja med ett par definitioner av fysikaliska storheter:

entropi (mikroskopisk definition) (entropy, entropi)

I den mikroskopiska definitionen, som används inom statistisk mekanik, mäter entropin oordningen hos varje individuell frihetsgrad, det vill säga variationen av mikrotillstånd. Den totala entropin är summan av varje entropibidrag från respektive frihetsgrad, exempelvis vibrationsfrekvens, magnetiskt bidrag, och dylikt. Entropi betecknas ofta med bokstaven S. Termodynamikens andra huvudsats säger att naturens riktning är att öka oordningen, vilket oftast postuleras som att jämvikt uppstår då entropin uppnått sitt maximala värde.

Låt oss ta det enklast möjliga systemet som exempel: en rad med N stycken spinn 1/2 atomer som sitter på en endimensionell tråd. Vi har även ett magnetfält av styrkan B. Den enda frihetsgraden är att spinnet kan ändras mellan + och - (spinn upp och ner). Om atomernas magnetiska moment är u blir den totala energin

E = (N+ - N-)uB

där Nx är antalet atomer i respektive tillstånd.

Observera att med denna definition är E noll om vi har lika många spinn-up som spinn-ner. Det lägsta energitillståndet har vi när alla atomer har spinn-ner, E = -NuB. Detta är systemets absoluta nollpunkt. Det finns bara ett sätt att åstadkomma detta tillstånd: alla atomer har spinn-ner. Entropin S är logaritmen av antalet tillstånd, så vi får S = log(1) = 0.

Om vi nu adderar energin uB till systemet, så behöver vi ändra spinnet till upp för en partikel. Den finns N möjligheter, så entropin är S = log(N).

Om vi adderar ett kvantum energi till, får vi N(N-1)/2 möjliga subtillstånd. Vi ser alltså att entropin ökar med ökande energi, dvs temperaturen (1/T = dS/dE, se nedanstående definition av temperatur) är positiv.

Entropin kan emellertid inte öka obegränsat eftersom vi har en maximal energi +NuB med alla atomer i spinn-up tillståndet. Här finns det återigen bara ett subtillstånd, och entropin är 0. Om vi tar bort ett kvantum energi har vi en atom med spinn-ner, dvs S = log(N). För ökande energi har vi alltså i detta området en negativ temperatur 1/T=dS/dE eftersom dS är negativt.

Vi har alltså skapat ett system där entropin först växer från 0 till ett maximum (med hälften spinn-up och hälften spinn-ner). Därefter minskar entropin till 0 när alla atomer har spinn-up. Temperaturen är från början positiv och ökar till positiva oändligheten vid entropins extremvärde (dS/dE=0). Där slår temperaturen över till negativa oändligheten och fortsätter att öka till den maximala energin. Observera att området med negativ temperatur är varmare än det med positiv temperatur. Detta är helt enkelt en konsekvens av hur absoluta temperaturen definierats.

Förutsättningen att kunna tala om negativ temperatur är alltså att energin hos systemet har ett maximum. Detta är möjligt bara för vissa frihetsgrader som t.ex. spinn. Den totala entropin för ett system är summan av entropin för de olika frihetsgraderna. Om man i systemet inkluderar translationsenergi som inte har något maxvärde, så kan man inte tala om negativa temperaturer.

temperatur (temperature, temperatur)

Temperatur är en fysikalisk storhet och ett mått på det som vanligtvis uppfattas som värme och kyla. Värmeflödet är från en högre temperatur till en lägre temperatur. Vid lika temperatur är föremål i termisk jämvikt. Temperatur kan också beskrivas som den kinetiska energin hos ett ämne. D.v.s. rörelsen hos molekylerna/atomerna inom ämnet. Vid högre temperatur rör de sig mer och vid lägre temperatur mindre.

Temperaturen kontrollerar alltså flödet av värme mellan olika system, och som i alla fysikaliska system strävar naturen mot maximal entropi dvs det tillstånd som kan realiseras på flest sätt. Sambandet mellan entropi och temperatur är

1/T=dS/dE

Så länge entropin ökar med energin (dS/dE > 0) är T alltid positiv. Bara vissa frihetsgrader kan ha negativ temperatur, se exemplet ovan. Förutsättningen är att växelverkan med andra frihetsgrader är tillräckligt liten.

Se Thermodynamic_temperatureDefinition_of_thermodynamic_temperature.

Maximal temperatur: För ett normalt system av partiklar med translationsenergi finns ingen skarp övre gräns för energin, åtminstone om man betraktar "normala" temperaturer. Vi mycket höga temperaturer kommer partiklarna att kollidera och producera partikel/antipartikelpar och fotoner. Detta medför en ökning av antalet frihetsgrader och en reduktion av temperaturhöjningen. Vid tillräckligt hög temperatur stöter man på samma problem som när man försöker beskriva universum nära big bang.

Experimentet som rapporteras i länk 1 involverar inte spinn utan är cirka 100000 atomer i vakuum som kyls ned till en miljarddels K i optiska fällor som åstadkoms med laserstrålar. Dessa skapar ett optiskt gitter med atomerna regelbundet ordnade som i en kristall (se nedanstående figur från optical_lattice). Atomerna kan röra sig mellan olika positioner med tunneleffekten, men den kinetiska energin har en övre gräns. På grund av detta kan systemet uppvisa negativa temperaturer vilket även påvisats i experimentet.

Se vidare länk 2, temperatur/temperaturskalor och Absolute_hot.

Question Image

Länkar: http://www.mpg.de/6776082/negative_absolute_temperature  |  http://math.ucr.edu/home/baez/physics/ParticleAndNuclear/neg_temperature.html
/Peter E 2013-01-07


Specifik värmekapacitet

Fråga:
Försöker förstå sambandet mellan ett ämnes specifika värmekapacitet och dess densitet. Järn och trä har ungefär samma värmekapacitivtet men järn har mycket högre densitet och ledningsförmåga. Hur hänger det ihop? Jag funderar ochså över porslin jämfört med trä. Porslin har densitet 2,3kg/dm3 och värmekapacitivitet 0,8 kJ/kg.K. Har försökt hitta förklaringsmodeller om det hör ihop med bindningar mellan atomer/molekyler (förmåga att röra sig)? närhet mellan atomer/molekyler (förmåga att leda vidare) Men olika ämnens egenskaper säger mot varandra. Tacksam för förklaring som går att använda på högstadiet.
/Eva  R,  Sturebyskolan,  Stockholm 2013-03-17
Svar:
Eva! Specifik värmekapacitet är ett ganska svårt ämne, så det finns inget enkelt svar på din fråga. Värme är ju slumpmässig rörelse hos molekyler, så den specifika värmekapaciteten bestäms inte av densiteten direkt utan i princip av antalet molekyler och antal frihetsgrader per molekyl. För det första så finns det inget samband mellan värmeledningsförmåga och specifik värmekapacitet. För värmeledningsförmåga se fråga [3874].

Först några definitioner:

Gaskonstanten (i allmänna gaslagen): R = 8.3145 J/(molK)

Boltzmanns konstant: k = 1.3806510-23 J/K

är en naturkonstant som relaterar temperatur för en mängd partiklar (molekyler) till energi på partikelnivå. Konstanten betecknas med kB eller bara k och motsvarar den allmänna gaskonstanten R dividerad med Avogadros tal NA.

Avogadros tal: NA = 6.022141023 /mol

är en fysikalisk konstant som anger antalet atomer eller molekyler i en mol av en substans.

R = kNA (k hänför sig alltså till en molekyl och R hänför sig till en mol, dvs NA molekyler)

(R = 1.3806510-236.022141023 = 8.3145)

För fasta ämnen och vätskor är det inte helt lätt, men låt oss börja med en gas eftersom det är lättare att förstå.

Figuren nedan (från Heat_capacity) visar värmekapaciteten CV för en tvåatomig gas (t.ex. N2) dividerat med gaskonstanten R som funktion av den absoluta temperaturen. För det första kan vi konstatera att CV varierar med temperaturen. Detta gäller oftast även för vätskor/fasta ämnen.

Varje frihetsgrad har värmekapaciteten (1/2)R J/mol eller (1/2)k J/partikel. Låt oss betrakta en tvåatomig gas, se figuren nedan. Molekylen kan röra sig i tre riktningar x,y och z. Vi har alltså 3 frihetsgrader och värmekapaciteten vid låga temperaturer blir (3/2)R.

Vid lite högre temperaturer kommer nya frihetsgrader in för en tvåatomig gas (för en enatomig gas förblir värmekapaciteten (3/2)R). Först rotation. En tvåatomig molekyl kan rotera kring två axlar. Den tredje axeln är linjen mellan de två atomerna, och den kommer inte i fråga av kvantmekaniska skäl (symmetri). Vi har alltså ytterligare två frihetsgrader, och vid normala temperaturer är CV = (5/2)R. (Figuren är lite missvisande här eftersom detta är temperaturområdet en tvåatomig gas normalt befinner sig i.)

Vid ytterligare högre temperatur kommer även vibrationer in. Molekylen kan vibrera längs axeln som definieras av linjen mellan atomerna. Denna vibration har två frihetsgrader (potentiell energi och kinetisk energi), så CV = (7/2)R.

Vad händer då med fasta ämnen/vätskor? Alla atomer binds till sina närmaste grannar. Vi bör alltså ha tre vibrationstillstånd (x, y och z) med två frihetsgrader var (potentiell energi och kinetisk energi). CV bör alltså vara

32 (1/2)R = 3R

Detta kallas Dulong-Petits lag. Denna stämmer ganska väl för de flesta ämnen. Det tillkommer emellertid ett par komplikationer. För vissa ämnen, speciellt lätta ämnen med starka bindningar som C och Be, är vissa av vibrationstillstånden blockerade vid rumstemperatur eftersom excitationsenergin är för hög. Värmekapaciteten blir då lägre än 3R. Dessutom är det antalet atomer som bestämmer CV. I tabellen Heat_capacityTable_of_specific_heat_capacities ges CV i sista kolumnen i enheten J/(molKatom). Om man har ett sammansatt ämne i fast form måste man alltså multiplicera värdet med antalet atomer i en molekyl. Ta luft som exempel. Luft består till största delen av tvåatomiga molekyler. Vi måste alltså multiplicera det givna värdet 1.25 med antalet atomer i en luftmolekyl (2) för att få det korrekta värdet (5/2)R.

Eftersom vibrationstillstånden inte kan exciteras vid låg energi brukar CV för fasta ämnen gå mot noll när temperaturen går mot noll.

Se även fråga [17968].

Question Image

/Peter E 2013-03-17


Mätning av vattnets kokpunkt

Gymnasium: Värme - felberäkning, kokande vatten [19198]
Fråga:
Hej !
Jag har en fråga angående vattnets temperatur. När jag skulle koka 1 liters vatten i en kastrull, så kokade vattnet vid 98 grader. Vad beror det på? och vid mitt andra försök kokade vattnet vid 100 grader. Vad beror det första försöket på, att den kokade vid 98 grader? jag hade faktiskt termometern på bottnet av kastrullen hela tiden om de hjälps, kastrullen är gjord av järn.
/Mila  j,  GTI,  göteborg 2013-10-30
Svar:
Låt oss först diskutera osäkerheter i mätningar.

När man gör mätningar är det viktigt att ha full kontroll på mätningens noggrannhet. Utan angivande av denna (ofta kallad osäkerhet, fel, mätfel eller felgränser) är en mätning av begränsat värde.

Mätfel definieras som skillnaden mellan ett uppmätt värde och det sanna värdet av en storhet.

Vanligen delas mätfelet upp i två delar:

Systematiska mätfel är enkelsidigt riktade och beror exempelvis på olämpligheter eller felaktigheter i mätutrustningen eller mätprincipen. Det systematiska felet definieras som skillnaden mellan väntevärdet (medelvärdet av många upprepade försök) och det sanna värdet. Ett typiskt exempel på systematiska mätfel är om man mäter avstånd med en felgraderad mätsticka.

Slumpvisa mätfel är stokastiskt (slumpmässigt) fördelade runt mätningens väntevärde. Slumpfelet definieras som skillnaden mellan uppmätt värde och väntevärdet. Ett typiskt exempel på slumpvisa mätfel är antalet pulser man får från ett radioaktivt preparat under en viss tid, se fråga [16653].

Se vidare Mätfel

I din mätning av kokningstemperaturen finns ett antal felkällor.

1 Kokningstemperaturen beror på lufttrycket som typiskt varierar mellan 980 (lågtryck) och 1050 (högtryck) millibar. Motsvarande kokningstemperaturer är 99oC och 101oC, se fråga [8721].

2 Sedan är temperaturen inte densamma i alla punkter i vattnet. Botten av kastrullen är säkert varmare än 100oC. Antagligen har vattnet nått kokningstemperatur bara i ett tunnt lager nära botten. Du kan alltså få variation i temperatur beroende på hur du håller termometern.

3 Temperaturen beror även på om det finns kondensationskärnor t.ex. salt eller potatisar i vattnet. I avsaknad av kondensationskärnor kostar det mer energi att bilda en bubbla, och vattnet blir överhettat, dvs kokar först vid betydligt högre temperatur, se fråga [2458] och [14212].

Se även länk 1.
Länkar: http://www.ucl.ac.uk/sts/staff/chang/boiling/index.htm
/Peter E 2013-10-31


Uppvärmning av en pool

Grundskola_1-3: Värme - specifik värmekapacitet [19315]
Fråga:
Vi håller precis på att värma vår nyfyllda pool. Det verkar ta jättelång tid, typ 2 grader per dygn. Mamma säger att det kommer gå fortare när poolen blivit lite varmare men pappa säger att det kommer fortsätta öka med ca 2 grader per dygn. Vem har rätt?
/Wilhelm  S,  EllagÃ¥rdsskolan,  Täby 2014-02-05
Svar:
Wilhelm! För en gångs skull är det pappa som har rätt! Värmemängden som krävs för att värma vattnet en grad är konstant mellan 0 och 100oC, dvs när vatten är flytande (se fråga [15734]). Om något kommer uppvärmningen gå långsammare eftersom förlusterna ökar med ökande temperaturskillnad vatten-luft.

En bassäng med vatten har mycket stor värmekapacitet, så det krävs mycket energi för att värma upp den. Låt oss anta följande:

Bassängens volym: 6x4x1.5 = 36 m3

Specifik värmekapacitet för vatten: 4.2 kJ/(kgK)

Energi för att värma vattnet en grad:

42003610001 = 151200000 = 1.5108 J

Om vi vill värma vattnet 2 grader per dygn behöver vi effekten:

2151200000/(246060) = 3500 W = 3.5 kW
2014-02-05


Kan vatten frysa vid lufttemperaturer över noll grader.

Lärarutbildning: Värme - temperaturstrålning, vardagsfysik, vatten/is [19446]
Fråga:
En fråga jag fått från elev under praktik:

Ett tunt lager vatten ligger på ett fat som är isolerat mot underlaget. På natten sjunker lufttemperaturen till 1 grader och det är molnfritt. Kan vattnet på fatet frysa? Motivera ditt svar!

Hur ska jag svara på bästa sätt?
/Jack  E,  Lunds Universitet,  Lund 2014-08-10
Svar:
Ja, vattnet kan frysa. Det finns två effekter som kan kyla vattnet så det fryser: utstrålning och förångning.

Om det är molnfritt är det nästan ingen instrålning av värmestrålning (infrarött/mikrovågor) från himlen. Utstrålningen är emellertid vad som motsvarar 1oC. Det betyder att vi har mer utstrålning än instrålning: temperaturen hos vattnet sjunker. Se vidare fråga [7130].

Om omgivande luftfuktigheten inte är för hög kommer en del av vattnet att förångas. Detta kräver en energi på 2260 kJ/kg ([14203]). Energi tas alltså från vattnet för att sänka temperaturen (2.1 kJ/kg.K) och bilda is (333 kJ/kg). Denna effekt används i snökanoner, se fråga [15592].
/Peter E 2014-08-11


Om termodynamikens andra huvudsats

Fråga:
Hej. Dök upp en "rolig samling elevsvar" på nätet med bl a en fysikfråga och ett kul svar. Vill dock gärna veta det riktiga svaret för att kunna gå vidare i livet.
Frågan löd ungefär: världens hav innehåller värme. En ingenjör designade en oceanångare som skulle utvinna värme vid T2=10 grader C och avge värme ut i atmosfären vid T1=20 grader C. Ingenjören fick sparken. Varför?
/Ingela  O,  2014-11-29
Svar:
Ja, det kan man fråga sig! Som det är formulerat är det inget annat än en värmepump. Med en värmepump kan man genom att utföra arbete överföra mer värme än tillfört arbete från en kall reservoar till en varm, se fråga [18487] och [18257].

Värmefaktorn (COP, Coefficient Of Performance) för en värmepump ges för en ideal process (Carnot) av

COP(värmepump) = TH/(TH-TC)

Om man sedan vill använda värmen från den varma reservoaren för en motor (värmemotor) som kan driva oceanångaren så är verkningsgraden

h = (TH-TC)/TH

(se fråga [15817])

Om vi nu seriekopplar värmepumpen och motorn får vi den totala verkningsgraden

COPh = 1.

Detta betyder att vi får ut precis den effekt vi puttar in. Observera att vi hela tiden talar om ideala processer utan förluster. I verkligheten vore ovanstående framdrivningsmetod vara mycket olönsam.

Se fråga [15733] för mer om termodynamikens huvudsatser och evighetsmaskiner. Länk 1 innehåller en ganska enkel framställning om termodynamikens andra huvudsats:

So the second law, in words, is just the statement that these two things are impossible. that is:

1. It is impossible for heat to move spontaneously from a cold body to a hot body with no other result.

2. It is impossible to convert heat quantitatively into work with no other result.

The latter statement is sometimes phrased: "It is impossible to make a perpetual motion machine of the second kind."
(A perpetual motion machine of the second kind is a machine that converts heat into work without doing anything else. Imagine an ocean liner that scoops up liquid water out of the ocean, pulls the heat out of the water and uses it to power the ship, and dumps the left-over ice cubes out the back of the ship.)

Note that a perpetual motion machine of the second kind would not violate the first law. Energy would be conserved because any heat extracted would be converted into work.

The second law is why automobiles have radiators. Someone might ask why we throw away all that energy that dissipates from the radiator. Why not capture the energy and use it do decrease our gas mileage? The answer is that if you don't dissipate the heat the engine burns up, as you would quickly find out if you bypassed the radiator with a hose or if you drained the coolant from the radiator.


Termodynamik är läran om energi, dess omvandling mellan olika former och särskilt samspelet mellan värme och arbete. Den klassiska termodynamiken studerar kopplingen mellan makroskopiska egenskaper som temperatur, volym och tryck hos system samt hur dessa påverkas och förändras genom termodynamiska processer. (Termodynamik)

Länk 2 innehåller övningar/svar i termodynamik.
Länkar: http://www.chem.arizona.edu/~salzmanr/480a/480ants/2ndlaw1/2ndlaw1.html  |  https://www.mech.kth.se/courses/5C1216/luntor/problems.pdf
/Peter E 2014-11-29


Vad händer om man ökar trycket i en kolv med vatten och vattenånga?

Lärarutbildning: Värme - fasdiagram, kokande vatten [19681]
Fråga:
En behållare, som är försedd med tätslutande kolv, innehåller enbart vatten och vattenånga. Vad händer om kolven trycks sakta inåt?
Temperaturen hålls konstant.
/Anna  K,  HIS,  Skövde 2015-02-13
Svar:
Anna! Se fasdiagrammet för vatten nedan (från Water Structure and Science). Vid tillräckligt högt tryck och temperatur mellan trippelpunkten (273 K) och kritiska punkten (647 K) kondenseras vattenånga till vatten. Här är några exempel (nedre svarta linjen, värden från Vapour_pressure_of_waterTables_of_water_vapor_pressures):

300 K (27oC) 3.6 kPa

331 K (58oC) 18 kPa

373 K (100oC) 101.3 kPa (kokpunkt vid atmosfärstryck)

Vad som händer vid gränslinjen mellan gas och vätska är att vid ökande tryck och konstant temperatur kondenseras vattenångan till vatten. Därvid sjunker trycket tillbaka till det ursprungliga som motsvarar ångtrycket vid den givna temperaturen. Om man ökar trycket igen kondenseras mer ånga tills endast vatten återstår.

Se vidare Phase_diagram.

Question Image

Länkar: http://www.efunda.com/materials/water/steamtable_sat.cfm
/Peter E 2015-02-13


Vilket år upptäckte man vintergatan?

Grundskola_7-9: Värme - galax, Vintergatan [20590]
Fråga:
Vilket år upptäckte man Vintergatan?
/Rasmus  T,  2017-05-05
Svar:
Vintergatan är en stavspiralgalax som har en diameter på cirka 100000 ljusår och är ungefär 12000 ljusår tjock. Man räknar med att det finns 200-400 miljarder stjärnor i Vintergatan. En av stjärnorna är solen, som befinner sig närmare periferin, ungefär 28000 ljusår från centrum. Det anses att det i Vintergatans centrum finns ett supermassivt svart hål kring vilket galaxen roterar. Ett galaktiskt år är cirka 226 miljoner år och är den tid det tar för solen att röra sig ett helt varv i sin bana runt Vintergatans centrum. (Vintergatan)

Eftersom man kan se Vintergatan med blotta ögat är Vintergatan känd sedan urminnes tider, det vill säga så länge det funnits människor på jorden. Man hade emellertid mycket fantasifulla föreställningar om vad Vintergatan var.

När man började använda teleskop (Galilei i början av 1600-talet, Galileo_GalileiMilky_Way_and_stars) såg man att Vintergatan var ett stjärnsystem av många stjärnor.

Man observerade även ett stort antal suddiga fläckar wilka senare visade sig vara stjärnsystem liknande Vintergatan. Denna hypotes bevisades på 1920-talet när man med större teleskop delvis kunde upplösa ljusfäckarna i stjärnor, och därmed bestämma avståndet, se Shapley-Curtisdebatten.

Se även Milky_WayAstronomical_history, fråga [17197] och [20332].

Nedanstående bild är en galax som antagligen är lik Vintergatan.

Question Image

/Peter E 2017-05-05


Sida 29 av 30

Föregående | Nästa

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

** Frågelådan är stängd för nya frågor tills vidare **
Länkar till externa sidor kan inte garanteras bibehålla informationen som fanns vid tillfället när frågan besvarades.

Creative Commons License

Denna sida frÃ¥n NRCF är licensierad under Creative Commons: Erkännande-Ickekommersiell-Inga bearbetningar