Vill du ha ett snabbt svar - sök i databasen:

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

41 frågor / svar hittades

Hur bildas temperaturstrålningen?

Fråga:
Hur bildas temperaturstrålningen? Är det fotonemission på samma sätt som i en fri gas. Linjespektrat från en gas beror väl inte på temperaturen. Dessutom varför ger temperaturstrålningen ett kontinuerligt spektrum?
Vilka är skillnaderna?
/Marianne  A,  Komvux,  Karlskrona 2006-04-20
Svar:
Värmestrålning eller temperaturstrålning är elektromagnetisk strålning som utsänds från ytor på grund av deras temperatur. (se värmestrålning)

I en fri gas med låg densitet är atomerna fria och stör inte varandra så mycket. Strålningen uppkommer då i övergångar mellan diskreta tillstånd (tillstånd med en väldefinierad energi), och man får ett linjespektrum. Detta beror inte på temperaturen på annat sätt än att populeringen av exiterade tillstånd (dvs hur många atomer som i medeltal befinner sig i ett visst tillstånd) varierar med temperaturen. För att atomen skall kunna befinna i högt exiterade tillstånd krävs hög temperatur eller något annat som exciterar dem, t.ex. elektroner som accelererats av spänningen över ett lysrör.

I en fast kropp eller en gas med högre densitet (som den synliga ytan på solen) kolliderar atomerna hela tiden och man har elektroner som rör sig fritt. När dessa fria elektroner accelereras (kolliderar) utsänds strålning med en energi som är slumpmässig men fördelningen bestäms av materialets temperatur. Man får ett kontinuerligt spektrum.

Den kosmiska bakgrundsstrålningen (se kosmisk bakgrundsstrålning) skapades när universum var mycket ungt, varmt och med hög densitet. Universum var då ogenomskinligt. När universum svalnade blev det genomskinligt (detta skedde när universum var 379000 år), och bakgrundsstrålningen har varit frikopplad från materian sedan dess. För närvarande motsvarar fördelningen av strålningen en temperatur av 2.7 K.

Black Body Radiation innehåller en härledning av strålningslagen och lite resonemang om hur absorption och emission "går till".
/Peter E 2006-04-21


Hur fungerar selektiva absorbenter i solfångare?

Fråga:
I termiska solfångare finns s.k. selektiva absorbenter. Dessa sätter de vanliga formlerna för svartkroppsstrålning och för absorbtion och reflektion ur spel. Hur har man lyckats med denna bedrift. Kan man skapa en sådan yta med de resurser som finns i en ordinär gymnasiefysiksal? Om möjligt önskas ett utförligt svar eller hänvisning till litteraturen.
/Anders  K,  Sollefteå 2006-11-08
Svar:
Nej, selektiva absorbenter sätter inte några naturlagar ur spel! Selektiva absorbenter innebär att ytskiktet på solfångaren behandlats med ett ytskikt som skall ge hög absorption av solstrålning och låg emittans av värmestrålning.

Kirchhoffs strålningslag säger att absorpionsförmågan är proportionell mot emissionsförmågan vid en viss våglängd. Solens yttemperatur är c:a 6000 grader, och den mesta energin i solstrålningen ligger i synligt ljus 400-700 nm. Det är alltså i detta område man vill ha maximal absorptionsförmåga hos en solfångare. Normalt innehåller en solfångare vatten som värmebärare, så temperaturen är maximalt 100 grader. Vid denna temperatur ligger maximum hos temperaturstrålningen vid mycket längre våglängder - i infrarött (se fråga 12793).

Med Blackbody Radiation Applet kan man uppskatta maximum i energifördelningen för olika temperaturer. För 6000 K ligger maximum vid 500 nm och vid 350 K (c:a 80oC) vid 8000 nm.

Även naturen utnyttjar denna selektiva absorption i växthuseffekten. Solljuset går obehindrat igenom atmosfären och värmer upp jordytan. Värmestrålningen från jordytan hindras att försvinna ut i rymden av växthusgaser - framför allt vattenånga och koldioxid. Utan denna värmande effekt skulle jorden vara c:a 35 grader kallare i medeltemperatur än vad den är.

Se vidare länk 1, solenergi, temperaturstrålning och Plancks strålningslag.
Länkar: http://www.iva.se/upload/Verksamhet/Projekt/Energiframsyn/El%20och%20V%C3%A4rme%20komplett3.pdf
/Peter E 2006-11-08


Energi i elektromagnetisk strålning

Fråga:
Hej!
Ofta avbildas elektromagnetiska vågrörelser
med projektioner av respektive fält som sinusoidala
vågor i fas men i två, mot varandra, vinkelräta plan, ett
för det elektriska och ett för magnetfältet, se nedanstående bild från http://www.monos.leidenuniv.nl/smo/index.html?basics/light.htm.

Efter varje period, så är magnituden hos båda fälten noll.
Var finns energin då?
/Dennis  G,  Uppsala 2006-12-23
Svar:
Klurig fråga! Sambandet mellan E-fältet och energin gäller emellertid amplituden och inte momentanvärdet, se länk 2. Man kan se en elektromagnetisk våg på två sätt: klassiskt enligt Maxwell (länk 1) eller kvantmekaniskt som en foton.

Tänk dig en klassisk mekanisk svängning, t.ex. en gitarrsträng. Energin i svängningen är proportionell mot amplituden i kvadrat (om den återställande kraften är -kx så blir energin kx2/2). Vid maxutslag är all energi potentiell energi. Vid nollutslag (rak sträng) är den potentiella energin noll, och all energi är rörelseenergi, se länk 2.

Jag vet inte hur långt man kan driva den mekaniska analogin när det gäller elektromagnetiska vågor - jag vet inte ens vad det är som "svänger".

Vad gäller den kvantmekaniska bilden så skulle i princip Heisenbergs obestämdhetsrelation tillåta energivariationen eftersom E = hv = h/T, där T är svängningens period:

ET = DEDT = h

Question Image

Länkar: http://hyperphysics.phy-astr.gsu.edu/hbase/waves/emwv.html  |  http://hyperphysics.phy-astr.gsu.edu/hbase/soushm.html#c3
/Peter E 2006-12-24


Vart tar energin hos de rödförskjutna fotonerna i den kosmiska bakgrundsstrålningen vägen?

Fråga:
Min lärare förklarade rödförskjutning som man upptäckt när man studerat strålning i rymden där fotonernas våglängd ökar ju längre de färdats genom universum. Men min lärare kunde inte svara en fråga som jag hade. Tittar man på formeln E = hc/(lambda) så ser man att ljusets energi blir mindre när våglängden ökar. Vart tar den energin vägen? Var/när sker rödförskjutningen? Sker den faktiskt eller är det bara en teori som aldrig blivit bevisad?
/Leonard  S,  Kronoborg,  Malmö 2007-06-04
Svar:
Leonard! Intressant fråga som inte är helt lätt att reda ut! För det första beror energin hos en foton på källans och mottagarens relativa hastighet. Om du rör dig mot källan ser du högre energi (kortare våglängd), om du rör dig bort från källan ser du lägre energi (längre våglängd). Detta är inget brott mot energins bevarande - den gäller bara för ett visst rörelsesystem. Detta är analogt med det klassiskt mekaniska problemet i fråga [14380].

När du observerar den kosmiska bakgrundsstrålningen skall du notera att den är helt (nåja nästan helt) frikopplad från materien. Frikopplingen skedde c:a 400000 år efter big bang. Den kosmiska bakgrundsstrålning du observerar har alltså gått rakt fram i nästan 14 miljarder år. Den kommer alltså från en punkt som ligger 14 miljarder år bort. På grund av universums expansion rör sig denna punkt bort från oss med en enorm hastighet och ger därmed en rödförskjutning på Z=1000. De 3000 K som var universums temperatur vid frikopplingen har minskat med en faktor 1000 till 3 K, och det är detta vi observerar.

Observera att vi pratar bara om den kosmiska bakgrundssrålningen. Det finns många andra källor till elektromagnetisk strålning från universum, och det gäller att med diverse trick dra bort denna bakgrund. Nedanstående bild (från länk 1) visar den uppmätta temperaturen hos den kosmiska bakgrundsstrålningen i olika riktningar. Först måste man korrigera för vintergatans rörelse som syns i den översta bilden. Det horisontella bandet i den mittersta bilden kommer från vår egen vintergata och måste subtraheras. Slutligen får man resultatet i den nedersta bilden som man tror är en bild på universum 400000 år gammalt.

Vad gäller energins bevarande så gäller den nog även för universum i stort. Den totala energin (som skall bevaras) är ju summan av den kinetiska energin och den potentiella energin. Beroende på kraftverkningar (gravitation, repulsion [mörk energi]) kan de variera inbördes så länge summan är konstant.

Se även fråga [19272].

Question Image

Länkar: http://www.fas.org/irp/imint/docs/rst/Sect20/A9.html
/Peter E 2007-06-05


Elektromagnetisk strålning i vardagen

Fråga:
Hur mycket strålning utsänder elektriska apparater, som vi använder dagligen (som mikrovågsugn, TV, hårtork).
En stjärna, hur mycket strålning utsänder den? Beror det på hur stor stjärnan är eller hur långt borta den är?
/Martina  J,  Malmö 2008-01-16
Svar:
Strålning kan vara mycket olika saker även om man begränsar sig till elektromagnetisk strålning. Allting som inte är vid absoluta nollpunkten sänder ut elektromagnetisk strålning, s.k. temperaturstrålning. Allt som belyses med elektromagnetisk strålning reflekterar en viss del av strålningen.

Hur mycket olika apparater strålar är svårt att säga. I vilken enhet? Watt, fotoner/sekund eller i förhållande till skadliga nivåer? Eftersom endast det senare är av praktiskt intresse koncenterar vi oss på dessa. Låt oss gå igenom det elektromagnetiska spektret med utgångspunkt från nedanstående bild (Bilden är från NASA och därmed fri att användas med angivandet av källan. Den finns i större skala på Wikipedia Electromagnetic_spectrum.)

Radiovågor

Anses vara ofarliga eftersom de innehåller mycket lite energi och dessutom går rakt igenom kroppen. Apparater med radiosändare är t.ex. trådlös telefon, trådlöst nätverk.

Mikrovågor

Dessa innehåller mer energi och är dessutom i resonans med vattenmolekylen. Detta betyder att de absorberas i kroppen och kan ge upphov till en viss uppvärmning. Faran med mobiltelefoner är mycket diskuterad, men även mikrovågsugnar läcker en del mikrovågor, se mikrovågsugn.

Infrarött (värmestrålning)

Fjärrkontroller använder ofta infrarött, men de är så svaga at de knappast utgör någon fara. Värmeelement och spisplattor strålar i infrarött, men eftersom huden stoppar stålningen samtidigt som den är känslig för värmen, så bör värmeelement normalt inte utgöra någon fara. Största delen av effekten i glödlampor strålar i infrarött, så glödlampor är egentligen bättre som värmeelement än ljuskällor.

Synligt ljus

Synligt ljus är en form av elektromagnetisk strålning med en våglängd mellan cirka 390 och 770 nanometer. Genom att ögat är känsligt för strålning i just detta intervall, kan vi se vår omgivning. (Ljus)

Ljus kommer från glödlampor, lysrör och lysdioder. Synligt ljus har mycket liten inträngningsförmåga i kroppen, varför strålningen knappast utgör en fara - bara ögat påverkas. Lysdioder (små lasrar) finns även i t.ex. CD-spelare. Ljuset från dessa kan i princip vara skadligt, men bara om man skruvar isär apparaten.

Ultraviolett

Kommer från UV-lampor. Kan orsaka brännskador vid överdriven exponering. Kan på längre sikt även orsaka hudcancer.

Solen är annars den viktigaste och starkaste källan för infrarött, synligt ljus och UV-strålning. Även stjärnor strålar mest i dessa våglängder, men eftersom effekten avtar med kvadraten på avståndet så är effekten från stjärnor helt försumbar.

Röntgenstrålning

Kommer naturligtvis från röntgenapparater, men de har man knappast hemma. Eftersom en gammal tjock-TV ritar bilden med 20 keV elektroner, så kommer det lite röntgenstrålning från bildskärmen. Platt-TV fungerar på ett annorlunda sätt, så de ger ingen röntgenstrålning.

Röntgenstrålning och gammastrålning är vad som betecknas joniserande strålning. Den är genomträngande och kan jonisera (slita loss elektroner) materia den träffar. Joniserande strålning är därför skadlig - speciellt kan den orsaka skador på DNA och därmed, på sikt, cancer.

Gammastrålning

Gammastrålning är en del av den naturliga strålningsbakgrunden från bergarter och från byggnadsmaterial. Så länge bakgrundsnivån inte är mycket förhöjd får man betrakta den som ofarlig - den går knappast att undvika.

Annan strålning

Alfastrålning är inte elektromagnetisk strålning utan består av He-kärnor som utsänds från tunga kärnor. Alfastrålning förekommer i brandvarnare (därför skall dessa när de är slut tas om hand på ett ordnat sätt). Radon, som finns i varierande mängd överallt i bostäder mm, är i vissa fall definitivt ett hälsoproblem.

Har jag glömt något? Det har jag säkert. Vi har inte heller diskuterat magnetfält och elektriska fält som bildas av elektriska apparater. Skadligheten hos dessa är dåligt känd och ganska kontroversiell.

Figuren nedan innehåller mycket nyttig information om elektromagnetisk strålning. Överst visas t.ex. att endast radiostrålning och synligt ljus släpps igenom jordens atmosfär. Termometern längst ner visar vilka våglängder som utstrålas vid olika temperaturer. Synligt ljus utsänds alltså vid temperaturer mellan 1000 K (c:a 700oC) och 10000 K.

Question Image

/Peter E 2008-01-18


Hur kan jag förklara för mina sjuor vad elektromagnetisk strålning är?

Fråga:
Hej, hur kan jag förklara för mina sjuor vad elektromagnetisk strålning är? Hur jag än försöker föklara så verkar inte de förstå.
Är mycket, mycket tacksam för hjälp !
/Jonas  H,  2008-02-11
Svar:
Hej Jonas! Ja, det är inte lätt! Försök med
Maxwells ekvationer, dom säger allt om elektromagnetisk strålning. Skämt åsodo :-), detta är ett problem. Vi måste acceptera två fakta vad gäller fysik och även annan naturvetenskap:

Djupare förståelse för många fenomen kräver goda kunskaper i matematik och fysik.

På en fundamental nivå förstår vi ingenting. Ingen vet t.ex. varför två massor attraherar varandra, varför elektromagnetisk strålning finns eller varför elektronens massa är vad den är.

När det gäller att undervisa i fysik tycker jag att man skall följa nedanstående punkter: alltså börja med naturvetenskapens grundvalar experiment och observationer och inte alltför tidigt teoretisera för mycket. Fysikundervisning utartar alltför ofta i att lösa tillrättalagda problem genom att sätta in värden i en formel. Problemet reduceras då ofta till ett meningslöst gissande vilken formel man skall använda. Det är bättre att koncentrera sig på experiment, och om man skall räkna så skall det vara verklighetsförankrade s.k. kontextrika problem - dvs sådana man ställs inför i verkligheten, se länk 1.

Glöm inte att fysik är en experimentell vetenskap! Albert Einstein (som för de flesta är urtypen av en teoretisk fysiker) har sagt:

"In the matter of physics, the first lessons should contain nothing but what is experimental and interesting to see.
A pretty experiment is in itself often more valuable than twenty formulae extracted from our minds; it is particularly important that a young mind that has yet to find its way about in the world of phenomena should be spared from formulae altogether. In his physics they play exactly the same weird and fearful part as the figures of dates in Universal History."


Den franske matematikern Henri Poincaré hävdade att arbetet med fysik var som att driva ett bibliotek:

"Den experimentella fysiken svarar för förvärven, och det är bara den ensam som kan berika biblioteket. Den matematiska fysiken ska ordna katalogen. Biblioteket blir inte rikare om katalogen är lätt att hitta i, men läsaren kan utnyttja dess rikedomar bättre. Och genom att visa bibliotekarien på luckorna i samlingarna, kan resurserna användas klokt, vilket är helt avgörande, då resurserna alltid är bristfälliga."


För elektromagnetisk strålning är en möjlig utgångspunkt att beskriva användningen av och faran med strålning av olika våglängder, se fråga [15570]. Fråga [13590] ger en starkt förenklad model av vad elektromagnetisk strålning är. Vad gäller experiment med elektromagnetisk strålning är det lättast att begränsa sig till de typer vi kan uppfatta med sinnerna, dvs ljus och värmestrålning.

Nu tillbaka till lite allmänt om fysikens väsen:

1 Experimentera, observera

Detta är grunden för all naturvetenskap. Observationer i modern mening gjordes först av dansken Tycho Brahe (se Tycho_Brahe)under slutet av 1500-talet. Han mätte framför allt planeten Mars' bana. Italienaren Galileo Galilei (se Galileo_Galilei) fortsatte 1609 observationerna av stjärnhimlen med det nyuppfunna teleskopet, men han utförde även många andra experiment framför allt i mekanik.

2 Se släktskap mellan olika fysikaliska fenomen

För många grenar av fysiken, som kan tyckas mycket olika, visar det sig att tolkningen av fenomen ofta har stora likheter. Teoretiska modeller från ett område kan ofta överföras med mindre modifikationer till ett annat. Alla mikroskopiska system (storlek atom och nedåt) styrs i princip av en enda ekvation, schrödingerekvationen.

3 Enkla modeller

För att föreställa sig ett fysikaliskt fenomen använder man sig ofta av enkla modeller. Bohr-atomen, med elektroner som rör sig i banor kring atomkärnan, beskriver en liten del av verkligheten och har därför ett visst värde. Man får emellertid inte övertolka förenklade modeller - modellen är inte verkligheten även om vissa modeller beskriver mätbara värden mycket väl.

4 Begränsa antalet grundläggande lagar

Olika fysikaliska lagar och teorier har olika dignitet eller status. Keplers lagar för planeternas rörelse kan t.ex. härledas från Newtons gravitationslag. Denna senare får därmed en högre status. På samma sätt beskriver Maxwells ekvationer (se ovan) det mesta som har att göra med elektricitet och magnetism, inklusive elektromagnetisk strålning. På så sätt kan vi beskriva världen med ett rimligt antal fundamentala lagar.

Följden Nicolaus Copernicus (idén att jorden kretsade kring solen), Tycho Brahe (noggranna observationer av planeternas rörelser), Galileo Galilei (mekanikförsök och observationer av astronomiska objekt med teleskop), Johannes Kepler (lagar för planetrörelsen) och Isaac Newton (universella gravitationslagen och Newtons rörelselagar) brukar framställas som början till ett modernt arbetssätt i vetenskapen. Detta brukar kallas den vetenskapliga revolutionen (Scientific Revolution, History_of_physicsScientific_Revolution).

Om man följer ovanstående punkter och bara går så långt som elevernas begreppsbild och andra färdigheter tillåter uppkommer inte problemet att läraren egentligen känner att han/hon inte förstår fenomenet fullständigt. Läraren får trösta sig med att det gör ingen!

Några nyckelord i frågelådan som är relevanta för naturvetenskaplig metod:

  vetenskaplig metod

  fysik

  fysikalisk modell

  fysik, förståelse av

  fysik, nytta med

  pseudovetenskap

  parapsykologi

  astrologi
Länkar: http://groups.physics.umn.edu/physed/Research/CRP/crintro.html
/Peter E 2008-02-12


Kan ni förklara hur jorden, solsystemet och vintergatan rör sig i rymden?

Fråga:
solen rör sej ju. åt vilket håll rör den sej den.jag menar om en människa står på solen och pekar åt det håll som solen rör sej åt. åt vilket håll skulle människan då peka åt?

Johan, Eriks pappa: Kan du också förklara hur solsystemet och vintergatan rör sig i rymden?
/erik  b,  färe,  sibbhult 2010-01-06
Svar:
Hej Erik och Johan! För det första är denna rörelse ganska komplicerat - man måste alltid ha klart för sig vad rörelsen är i förhållande till. Låt oss börja på jorden och se hur den rör sig och sedan gå succesivt utåt:

  1. Jordens rotation kring sin axel
  2. Jordens rörelse i en bana kring solen
  3. Solens (och solsystemets) rörelse kring vintergatans centrum
  4. Vintergatans rörelse i förhållande till den lokala gruppen av galaxer
  5. Den lokala gruppens rörelse i förhållande till "universum" (den kosmiska bakgrundsstrålningen).


1 Om du står på norra halvklotet och tittar mot söder så rör sig alla himlakroppar (solen, månen, planeter, stjärnor) långsamt från öster mot väster (från vänster till höger). Detta orsakas av jordens rotation i motsatt riktning (jorden roterar från väster till öster). Jorden roterar ett varv på 24 timmar (nästan definitionsvis eftesom sekunden utspungligen definierades efter jordens rotation så att dygnet skulle innehålla 246060 = 86400 sekunder).

Vid ekvatorn motsvarar rotationen en hastighet av 0.5 km/s. Denna väst-östliga rotation är orsaken till att de flesta satelliter har banor från väster till öster - man vinner ju upp till 0.5 km/s (av erforderliga 8 km/s) om man skjuter upp satelliten i den riktningen.

2 Om vi kunde stå på solens "nordpol" skulle vi kunna se att jorden (den tredje, blå planeten i animeringen nedan) rör sig runt solen i en nästan cirkulär bana från höger till vänster (moturs). Hastigheten i banan är nära 30 km/s i förhållande till solen.





3 Solen går i en bana runt vintergatans centrum på ett avstånd av c:a 26000-28000 ljusår. Ett varv kring centrum tar 225-250 miljoner år med en hastighet av 220 km/s. Riktningen hos denna rörelse är mot stjärnbilden Herkules nära den ljusa stjärnan Vega. Se Milky_WaySun.27s_location_and_neighborhood för detaljer om denna rörelse.

4 I den lokala gruppen av galaxer rör sig vintergatan mot andromedagalaxen (M31) med en hastighet av 300 km/s. Trösten är att det tar mycket lång tid innan de kolliderar: Eftersom hastigheten är en tusendel av ljushastigheten och eftersom avståndet är 2.5 miljoner ljusår kommer det ta mer är 2 miljarder år innan M31 kolliderar med vintergatan.

5 Från studier av den kosmiska bakgrundsstrålningen kan man se att jorden, solen och vintergatan rör sig i förhållande till bakgrundsstrålningen med en hastighet av 552 km/s i riktning mot stjärnbilden Vattenormen (RA 10.5 h, Dekl -24o) på södra stjärnhimlen. Bilden nedan (och den översta bilden i fråga [15347]) visar detta. Vi rör oss alltså från det röda området mot det blå. Om man så vill kan man definiera bakgrundsstrålningen som universum, så att rörelsen 552 km/s är en absolut hastighet i förhållande till universum.

Ja Erik, jag sa det var komplicerat! Jag hoppas du ändå fick ut något av svaret :-).

Se vidare Planetary Fact Sheets, Milky_Way och Andromeda_Galaxy för de olika rörelserna.

Kommentar till punkt 5


Framställningen i länk 1 (av Ethan Siegel, som är en pålitlig källa) är i stort set konsistent med ovanstående. Vad gäller rörelsen i punkt 5 ger länk 1 värdet 368 ± 2 km/s för solsystemets hastighet relativt den kosmiska bakgrundsstrålningen. Diskrepansen med ovanstående värde är antagligen att man i varierande mån tagit hänsyn till övriga rörelser som solens rörelse i vintergatan och vintergatans rörelse.

Question Image

Länkar: https://www.forbes.com/sites/startswithabang/2016/04/01/how-fast-does-earth-move-through-the-universe/#2880ac664d5c
/Peter E 2010-01-07


Hur har man kommit fram till att fotonens energi är W=hf?

Fråga:
Hej!
hur har man kommit fram till att fotonens energi är W=hf, där h är planks konstant och f är frekvensen? finns det en svensk länk där man kan läsa om det i djupet tack!!
/Ali  Z,  malmö borgarskolan,  malmö 2010-02-23
Svar:
Hej Ali! Bra fråga! Formeln för fotonens energi

E = hv (av konvention använder man oftast v [grekiska ny] för fotonens frekvens)

är ju så djupt rotad i den moderna fysiken att man kanske glömmer vad den kommer ifrån.

När det gäller fysikaliska samband uppkommer de typiskt på ett av två sätt:

1 ett experimentellt uppmätt samband eller lag

2 ett antagande som leder till andra samband som kan verifieras experimentellt

eller en kombination av 1 och 2


När det gäller fotonens energi är det till att börja med fall 2: Max Planck (Max_Planck) gjorde antagandet att energin var proportionell mot frevensen för att härleda ett fungerande uttryck för den den experimentellt observerade fördelningen hos temperaturstrålning (1900), se Plancks strålningslag, speciellt fråga [12397] och Planck's_law (den senare på engelska).

Bilden nedan från Wikimedia Commons Ultraviolet_catastrophe) visar uppmätt temperaturstålning för tre olika temperaturer (nedre kurvorna). Den övre, svarta kurvan visar den klassiska förutsägelsen (Rayleigh–Jeans law). Som synes avviker den senare mycket från den observerade fördelningen, speciellt för korta våglängder.

Plancks uttryck representerade uppmätta data mycket bra även för korta våglängder. Plancks antagande att energin var given av strålningens frekvens var en avvikelse från den klassiska teorin där energin gavs av amplituden hos strålningen. Utan att veta det förebådade Planck den kommande kvantmekaniken.

Einstein var i sin artikel om fotoelektriska effekten (1905) mycket tydlig med kvantiseringen, och införde begreppet foton för en "ljus-partikel". I fråga [2931] visas data för fotoelektriska effekten som visar proportionaliteten mellan energi och frekvens.

Det mest direkta beviset kom genom Bohrs atommodell (1913). Man kunde bygga upp energidiagram där skillnaden i energin mellan två tillstånd var lika med energin hos fotonen som utsändes vid en övergång. Man kunde mäta våglängden och med hjälp av det generella sambandet mellan vågens utbredningshastighet c, våglängden l och frekvensen v

c = lv

verifiera proportionaliteten mellan energi och frekvens. Senare infördes namnet Plancks konstant h för denna proportionalitetskonstant.

År 1923 verifierade Arthur Compton sambandet återigen genom sitt experiment att sprida fotoner på elektroner, se comptonspridning.

Länk 1 är en intressant artikel om Max Planck och länk 2 beskriver den historiska utvecklingen av atomteorin.

/fa

Question Image

Länkar: http://www.fof.se/tidning/2002/3/max-planck  |  http://www.pixe.lth.se/bossen/fysik/history1.htm
/Peter E 2010-02-23


Vilken strålning är på längre sikt den farligaste och varför?

Fråga:
Håller på med ett arbete om strålning (alfa, beta, gamma). Min fråga är: Vilken strålning är på längre sikt den farligaste och varför?
Vi blir inte riktigt eniga i vår grupp och behöver er hjälp i frågan.
/Bodil  L,  Kinna 2010-10-28
Svar:
Bodil! Jag kan förstå att ni inte kan enas - det är en svår fråga som beror på vilka aspekter man betraktar.

Det sönderfall som i normalfallet ger upphov till mest skador är utan tvekan alfa-sönderfall av radon. Figuren nedan visar orsaker till cancer (antal fall per år i Sverige). I Sverige dör drygt 20% av cancer. Uppdelningen mellan olika orsaker till cancer är emellertid mycket osäker. Diagrammet kan emellertid användas till att se den inbördes storleksordningen av olika riskfaktorer.

Vi kan se att radon orsakar av storleksordningen 500 dödsfall per år i lungcancer, se RadonHälsoproblem. Den viktigaste anledningen till farligheten är att radon är en gas som lätt tar sig in i lungorna. När radonet sedan sönderfaller gör jonisations-spåren som alfa-partiklarna ger stor skada som senare kan ge upphov till cancer.

Om man inte får i sig alfa-strålaren (se fråga [15046] för en beskrivning av vad som händer om man får i sig Po-210), så är en alfa-strålare ganska ofarlig eftersom strålningen stoppas av ett pappersark eller det yttersta hudlagret, se
fråga [12842].

Gammastrålning förekommer framför allt i samband med betastrålning. Gammastrålning har stor genomträngningsförmåga, så man får skydda sig med tjocka väggar eller avstånd (mängden strålning avtar ju som 1/r2). Gamma- och betastrålning förekommer bland annat i kärnkraftsavfall, som naturligtvis kan vara mycket farligt om det inte förvaras säkert.

Se vidare Radon och Ionizing_radiation.

Question Image

/Peter E 2010-10-28


Varför har nyhuggen ved sämre eldningsvärde än torr ved?

Gymnasium: Värme - temperaturstrålning, vardagsfysik [18250]
Fråga:
Varför har nyhuggen ved sämre eldningsvärde än torr ved?
/Per  O,  Borgarskolan,  Malmö 2011-10-27
Svar:
Nyhuggen ved innehåller mycket mer vatten än torkad ved. Det traditionella svaret är att vattnets ångbildningsvärme är stor, och att alltså mycket energi förloras till att förånga vatten. Låt oss göra en kvantitativ uppskattning.

Energiinnehållet i torr ved är enligt Energy_densityCommon_energy_densities 16 MJ/kg. Ångbildningsvärmet för vatten är 2.3 MJ/kg. Om vatteninnehållet är 30% så utvecklas 0.716=11.2 MJ. För att förånga vatteninnehållet går det åt 0.32.3=0.7 MJ. Nettoenergiinnehållet blir alltså 11.2-0.7=10.5 MJ. Förhållandet torr ved/fuktig ved blir alltså 16/10.5=1.5.

Det mesta av effektförlusten kommer sig av att vattnet inte ger något bidrag till energiutvecklingen. Totalt sett är det alltså inte ångbildningsvärmet som är den stora effekten utan det faktum att massa försvinner vid torkning. Den fuktiga vedklabben ger alltså nästan samma totala energiutveckling om man torkar den.

Men den som eldat med fuktig och torr ved vet att det är en enorm skillnad! Det måste alltså vara en annan effekt som dominerar, t.ex. hur effektivt värmen transporteras till rummet.

Det är självklart att torr ved brinner bättre (vid högre temperatur) än fuktig ved. Den utstrålade effekten per m2 ges av Stefan-Boltzmanns lag (Stefan–Boltzmann_law):

P = sT4

där konstanten s=5.6710-8 W/m2/K4 och T är den absoluta temperaturen i kelvin. Vi har alltså för strålning ett mycket häftigt beroende av temperaturen. Låt oss anta att temperaturen är 1000 K med torr ved och 750 K med fuktig. Strålningen är då 1.334=3 gånger högre för torr ved. (De uppskattade temperaturerna är från länk 1 sidan 4.)

Men vi måste självklart bevara den totala energin, hur går det ihop? Om förbränningen sker långsamt vid lägre temperatur kommer en större andel av värmen försvinna ut i skorstenen. Eftersom man knappast vill ha någon konvektion (strömning) av rökgaser ut i rummet, så är det strålningen (värmestrålning och synligt ljus) som värmer upp spisen och rummet. Effektiviteten hos spisen är alltså mycket beroende på temperaturen, som i sin tur beror av fuktinnehållet i veden.

Se även Wood_fuel. Nedanstående bild är därifrån.

Question Image

Länkar: http://www.forestry.gov.uk/pdf/eng-woodfuel-woodasfuelguide.pdf/$FILE/eng-woodfuel-woodasfuelguide.pdf
/Peter E 2011-10-27


Sida 3 av 5

Föregående | Nästa

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

** Frågelådan är stängd för nya frågor tills vidare **
Länkar till externa sidor kan inte garanteras bibehålla informationen som fanns vid tillfället när frågan besvarades.

Creative Commons License

Denna sida från NRCF är licensierad under Creative Commons: Erkännande-Ickekommersiell-Inga bearbetningar