Vill du ha ett snabbt svar - sök i databasen:

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

64 frågor / svar hittades

Hur alstras det polariserade ljuset som kommer från himlen?

Fråga:
Hur alstras det polariserade ljuset som kommer från himlen?
Jag har studerat ljuset med hjälp av polarisationsfilter.
Det är inte hela himlen som är polariserad utan polariseringen går som ett band över himlen, vinkelrätt mot solstrålarna, som ett bildäck. Det är tydligast på morgon och kväll, ett välkänt fenomen.

Min tolkning är följande. Det är det blå ljuset från himlen som är polariserat. Jag misstänker att det är syre, ozon eller kväve, alltså en molekyl med dubbel eller trippelbindningar, som svarar för polariseringen och skickar ut infallande ljus vinkelrätt mot infallsvinkeln. Om det infallande ljuset är blått, ultraviolett eller ännu kortvågigare har jag ingen idé om.
Det blå ljuset på himlen kommer från ozon, men det är fluorescens. Det har nog inget med polariseringen av ljuset att göra.

Jag är pensionerad biologilektor från Polhemskolan här i Lund. Jag följer fågelsträcket i Falsterbo och läser om frågor om fåglarnas orientering, hobbyforskning. Fåglar uppfattar polariserat ljus. Läste på 70-talet 20 poäng fysik med resultatet mvg, och lite fysik sitter fortfarande kvar.
Jag är tacksam för tips om litteratur om polarisering av himlen.
Finns det någon som kan hjälpa mig?
Mycket tacksam för någon form av svar.
/Ingvar  l,  f.d. Polhemskolan,  Lund 2004-10-21
Svar:
Ingvar! Vi har svarat flera gånger på frågan varför himlen är blå (se nedanstående avancerade sökning), men inte i detalj gått in på processen och varför det spridda ljuset är polariserat.

Anledningen till att himlen är blå är att solljuset (bestående av alla färger, dvs i princip vitt) sprids av luftens molekyler i en process som kallas Rayleigh-spridning (NE: spridning av ljus mot partiklar som är mycket mindre än ljusets våglängd, t.ex. luftens molekyler), se nedanstående figur. (Observera att solen är vit, inte gul!) Figuren ger också uttrycket för sannolikheten för spridning som funktion av spridningsvinkeln q och ljusets våglängd l.

Förutom några konstanter består spridningssannolikheten av två termer:

1/l4

Ljus av kort våglängd sprids allså mycket mer är ljus av lång våglängd. Om vi jämför blått ljus (4500 Å) med rött ljus (6500 Å) får vi förhållandet (6500/4500)4=4.4. Blått ljus sprids alltså betydligt mer än rött. Det är anledningen till att himlen ser blå ut.

(1 + cos2q)

Denna term säger att intensiteten av det spridda ljuset är minst 90o från solen. I själva verket är intensiteten i 90o precis hälften av intensiteten i 0o. Detta ger en indikation av vad som orsakar denna term: polarisationen. Ljuset från solen är opolariserat och kan ses som två polarisationsriktningar med samma intensitet vinkelräta mot varandra. I
90o kan endast den ena riktningen spridas. Intensiteten där blir alltså hälften. För att bekräfta teorin kan man kontrollera ljusets polarisation i olika riktningar (olika spridningsvinklar). Man finner då att polarisationsgraden är maximal 90o från solen.

Fåglar, som kan uppfatta polarisation utan hjälpmedel (t.ex. polarisationsglasögon) kan alltså bestämma riktningen mot solen även när denna skyms av moln.

Kan man förstå varför bara den ena polarisationsriktningen kan spridas i 90o? Ja, det är ganska lätt att ge en enkel bild av processen om man vet hur en dipol (enkel, rak sändarantenn) sänder ut strålning. En dipol strålar maximalt i 90o och inte alls i 0o.

Vi delar det infallande solljuset i två polarisationskomponenter - polarisationsriktningen för elektromagnetisk stålning är E-vektorns riktning: vinkelrätt mot synlinjen och parallellt med synlinjen. Ljus som faller in med polarisationsriktningen i synlinjen kommer att få elektroner att svänga i synlinjen. Dessa dipoler kan alltså inte stråla i synlinjen. Ljus som däremot faller in med polarisationsriktningen vinkerätt synlinjen kommer att få elektroner att svänga vinkelrätt mot synlinjen. Dessa dipoler kan alltså att stråla maximalt synlinjen. Alltså ser vi bara den senare hälften, och det spridda ljuset är polariserat.

Rayleigh-spridning är helt oberoende av vilka molekyler vi har eftersom alla molekyler är ungefär lika stora. Processen är alltså inte fluorescens (NE: en form av luminiscens [utsändande av ljus] från ett system) utan i princip elastisk spridning mot bollar utan inre struktur.

Se även snackset Varför är himlen blå? och nedanstående länk.

Question Image

Länkar: http://hyperphysics.phy-astr.gsu.edu/hbase/atmos/blusky.html
/Peter E 2004-10-22


Varför har vi årstider?

Fråga:
Alla planeter som har en lutning har årstider. Men borde inte själva årstiderna bero på att ett område får olika mängd energi ifrån solen beroende på vart i året dom är. Och jag undrar också om det är möjligt att räkna ut hur mycket energy en plats får som är X° från ekvatorn, och planeten lutar Y°. är det möjligt?
/zelos  j,  rudbeck,  örebro 2005-03-30
Svar:
Jo, primärt beror årstiderna på att solenergin sprids ut på olika stora ytor beroende på vinkeln mellan jordytans plan och riktningen till solen, se figuren nedan. Vi kan även uttrycka det så att instrålningen (effekten hos inkommande strålning) beror på hur högt solen står på himlen. Dessutom påverkas naturligtvis instrålningen av att dagens längd varierar. En ytterligare effekt som påverkar temperaturen är jordytans albedo (reflektionsförmåga). Is/snö har högt albedo och tederar alltså att sänka temperaturen.

Eftersom man har utbyte av värme mellan olika delar av jorden (havsströmmar och vindar) blir det i själva verket mycket mer komplicerat att beräkna temperaturen vid en viss breddgrad för en given tid på året.

Om man placerar en yta på en kvadratmeter vinkelrätt mot solen utanför jordatmosfären kommer ytan att motta effekten 1370 W.
Detta är vad man kallar solarkonstanten (1370 W/m2). Om vinkeln mellan ytan och riktningen till solen är i, så kommer effekten per kvadratmeter bli 1370sini, dvs uppvärmningen blir mindre ju mindre i blir.

Tillägg om solarkonstanten

Man kan beräkna solarkonstanten från solens utvecklade effekt (luminositet) P (för detta värde och jordbanans radie R se Planetary Fact Sheets):

solarkonstanten = P/(4pR2)

Uttrycket i nämnaren är ytan av ett klot med jordbanans radie. Med insatta värden får vi

solarkonstanten = 384.61024/(4p(149.6109)2) = 1368 W/m2.

Anmärkning: I själva verket har man bestämt solarkonstanten och från denna räknat ut solens utvecklade effekt.

Se fråga [16846] hur man uppskattar jordens medeltemperatur från solarkonstanten. I länk 1 uppskattas solens utstrålade effekt med hjälp av Stefan Boltzmans lag.

Se vidare solarkonstanten och Solar_constant.

Question Image

Länkar: http://www-vaxten.slu.se/amnesingang/Naturvet/ovningar/solarkonst.htm
/Peter E 2005-03-31


Hur fungerar selektiva absorbenter i solfångare?

Fråga:
I termiska solfångare finns s.k. selektiva absorbenter. Dessa sätter de vanliga formlerna för svartkroppsstrålning och för absorbtion och reflektion ur spel. Hur har man lyckats med denna bedrift. Kan man skapa en sådan yta med de resurser som finns i en ordinär gymnasiefysiksal? Om möjligt önskas ett utförligt svar eller hänvisning till litteraturen.
/Anders  K,  Sollefteå 2006-11-08
Svar:
Nej, selektiva absorbenter sätter inte några naturlagar ur spel! Selektiva absorbenter innebär att ytskiktet på solfångaren behandlats med ett ytskikt som skall ge hög absorption av solstrålning och låg emittans av värmestrålning.

Kirchhoffs strålningslag säger att absorpionsförmågan är proportionell mot emissionsförmågan vid en viss våglängd. Solens yttemperatur är c:a 6000 grader, och den mesta energin i solstrålningen ligger i synligt ljus 400-700 nm. Det är alltså i detta område man vill ha maximal absorptionsförmåga hos en solfångare. Normalt innehåller en solfångare vatten som värmebärare, så temperaturen är maximalt 100 grader. Vid denna temperatur ligger maximum hos temperaturstrålningen vid mycket längre våglängder - i infrarött (se fråga 12793).

Med Blackbody Radiation Applet kan man uppskatta maximum i energifördelningen för olika temperaturer. För 6000 K ligger maximum vid 500 nm och vid 350 K (c:a 80oC) vid 8000 nm.

Även naturen utnyttjar denna selektiva absorption i växthuseffekten. Solljuset går obehindrat igenom atmosfären och värmer upp jordytan. Värmestrålningen från jordytan hindras att försvinna ut i rymden av växthusgaser - framför allt vattenånga och koldioxid. Utan denna värmande effekt skulle jorden vara c:a 35 grader kallare i medeltemperatur än vad den är.

Se vidare länk 1, solenergi, temperaturstrålning och Plancks strålningslag.
Länkar: http://www.iva.se/upload/Verksamhet/Projekt/Energiframsyn/El%20och%20V%C3%A4rme%20komplett3.pdf
/Peter E 2006-11-08


Varför syns inte alla linjer i emissionsspektrum i ett absorptionsspektrum?

Gymnasium: Ljud-Ljus-Vågor - ljus, spektrum [15042]
Fråga:
När ljus passerar genom vätgas vid rumstemperatur kan absorptionslinjer som motsvarar Lymanserien observeras? Varför syns inte de andra serierna? Vad spelar rumstemperaturen för roll? Borde det inte vara de andra serierna som syns, med tanke på att Lymanserien omfattar energisprång ner till grundtillståndet, vilket ger ultraviolett ljus som inte är synligt?
/Petra  L,  Södra Latin,  Stockholm 2007-01-01
Svar:
En absorptionslinje uppkommer när en foton träffar en atom och lyfter upp (exiterar) en elektron till ett högre liggande tillstånd. En emissionslinje uppkommer när elektronen hoppar tillbaka till ett lägre tillstånd. Se fråga 176 för en förklaring hur emissions- och absorptionsspekta uppkommer. Vad som inte framkommer där är att inte alla emissionslinjer förekommer i absorptionsspektrum. Om den absorberande gasen är kall, så ser man bara övergångar från grundtillståndet, a och b i nedanstående bild. Detta för att alla atomer befinner sig i grundtillståndet. I emissionsspektrum, däremot, ser man alla tre övergångarna a, b och c.

Lymanserien är den serie i vätespektrum som slutar i grundtillståndet, och eftersom alla atomer vid rumstemperatur befinner sig i grundtillståndet ser man bara lymanserien i absorption. Om temperaturen är betydligt högre kan en del av atomerna tillfälligtvis befinna sig i tillstånd ovanför grundtillståndet. Man kan då (som i solens spektrum) se även andra serier, t.ex. balmerserien, i absorption, se fråga [17723].

Question Image

/Peter E 2007-01-02


Hur kan jag förklara för mina sjuor vad elektromagnetisk strålning är?

Fråga:
Hej, hur kan jag förklara för mina sjuor vad elektromagnetisk strålning är? Hur jag än försöker föklara så verkar inte de förstå.
Är mycket, mycket tacksam för hjälp !
/Jonas  H,  2008-02-11
Svar:
Hej Jonas! Ja, det är inte lätt! Försök med
Maxwells ekvationer, dom säger allt om elektromagnetisk strålning. Skämt åsodo :-), detta är ett problem. Vi måste acceptera två fakta vad gäller fysik och även annan naturvetenskap:

Djupare förståelse för många fenomen kräver goda kunskaper i matematik och fysik.

På en fundamental nivå förstår vi ingenting. Ingen vet t.ex. varför två massor attraherar varandra, varför elektromagnetisk strålning finns eller varför elektronens massa är vad den är.

När det gäller att undervisa i fysik tycker jag att man skall följa nedanstående punkter: alltså börja med naturvetenskapens grundvalar experiment och observationer och inte alltför tidigt teoretisera för mycket. Fysikundervisning utartar alltför ofta i att lösa tillrättalagda problem genom att sätta in värden i en formel. Problemet reduceras då ofta till ett meningslöst gissande vilken formel man skall använda. Det är bättre att koncentrera sig på experiment, och om man skall räkna så skall det vara verklighetsförankrade s.k. kontextrika problem - dvs sådana man ställs inför i verkligheten, se länk 1.

Glöm inte att fysik är en experimentell vetenskap! Albert Einstein (som för de flesta är urtypen av en teoretisk fysiker) har sagt:

"In the matter of physics, the first lessons should contain nothing but what is experimental and interesting to see.
A pretty experiment is in itself often more valuable than twenty formulae extracted from our minds; it is particularly important that a young mind that has yet to find its way about in the world of phenomena should be spared from formulae altogether. In his physics they play exactly the same weird and fearful part as the figures of dates in Universal History."


Den franske matematikern Henri Poincaré hävdade att arbetet med fysik var som att driva ett bibliotek:

"Den experimentella fysiken svarar för förvärven, och det är bara den ensam som kan berika biblioteket. Den matematiska fysiken ska ordna katalogen. Biblioteket blir inte rikare om katalogen är lätt att hitta i, men läsaren kan utnyttja dess rikedomar bättre. Och genom att visa bibliotekarien på luckorna i samlingarna, kan resurserna användas klokt, vilket är helt avgörande, då resurserna alltid är bristfälliga."


För elektromagnetisk strålning är en möjlig utgångspunkt att beskriva användningen av och faran med strålning av olika våglängder, se fråga [15570]. Fråga [13590] ger en starkt förenklad model av vad elektromagnetisk strålning är. Vad gäller experiment med elektromagnetisk strålning är det lättast att begränsa sig till de typer vi kan uppfatta med sinnerna, dvs ljus och värmestrålning.

Nu tillbaka till lite allmänt om fysikens väsen:

1 Experimentera, observera

Detta är grunden för all naturvetenskap. Observationer i modern mening gjordes först av dansken Tycho Brahe (se Tycho_Brahe)under slutet av 1500-talet. Han mätte framför allt planeten Mars' bana. Italienaren Galileo Galilei (se Galileo_Galilei) fortsatte 1609 observationerna av stjärnhimlen med det nyuppfunna teleskopet, men han utförde även många andra experiment framför allt i mekanik.

2 Se släktskap mellan olika fysikaliska fenomen

För många grenar av fysiken, som kan tyckas mycket olika, visar det sig att tolkningen av fenomen ofta har stora likheter. Teoretiska modeller från ett område kan ofta överföras med mindre modifikationer till ett annat. Alla mikroskopiska system (storlek atom och nedåt) styrs i princip av en enda ekvation, schrödingerekvationen.

3 Enkla modeller

För att föreställa sig ett fysikaliskt fenomen använder man sig ofta av enkla modeller. Bohr-atomen, med elektroner som rör sig i banor kring atomkärnan, beskriver en liten del av verkligheten och har därför ett visst värde. Man får emellertid inte övertolka förenklade modeller - modellen är inte verkligheten även om vissa modeller beskriver mätbara värden mycket väl.

4 Begränsa antalet grundläggande lagar

Olika fysikaliska lagar och teorier har olika dignitet eller status. Keplers lagar för planeternas rörelse kan t.ex. härledas från Newtons gravitationslag. Denna senare får därmed en högre status. På samma sätt beskriver Maxwells ekvationer (se ovan) det mesta som har att göra med elektricitet och magnetism, inklusive elektromagnetisk strålning. På så sätt kan vi beskriva världen med ett rimligt antal fundamentala lagar.

Följden Nicolaus Copernicus (idén att jorden kretsade kring solen), Tycho Brahe (noggranna observationer av planeternas rörelser), Galileo Galilei (mekanikförsök och observationer av astronomiska objekt med teleskop), Johannes Kepler (lagar för planetrörelsen) och Isaac Newton (universella gravitationslagen och Newtons rörelselagar) brukar framställas som början till ett modernt arbetssätt i vetenskapen. Detta brukar kallas den vetenskapliga revolutionen (Scientific Revolution, History_of_physicsScientific_Revolution).

Om man följer ovanstående punkter och bara går så långt som elevernas begreppsbild och andra färdigheter tillåter uppkommer inte problemet att läraren egentligen känner att han/hon inte förstår fenomenet fullständigt. Läraren får trösta sig med att det gör ingen!

Några nyckelord i frågelådan som är relevanta för naturvetenskaplig metod:

  vetenskaplig metod

  fysik

  fysikalisk modell

  fysik, förståelse av

  fysik, nytta med

  pseudovetenskap

  parapsykologi

  astrologi
Länkar: http://groups.physics.umn.edu/physed/Research/CRP/crintro.html
/Peter E 2008-02-12


Varför gnistrar diamantringar vackrare i sol-, stearin-, och halogenljus än i vanlig glödlampe- eller lysrörsljus.

Grundskola_4-6: Ljud-Ljus-Vågor - ljus, vardagsfysik [15928]
Fråga:
Jag fick en fråga av en elev om varför diamantringar gnistrar vackrare i sol-, stearin-, och halogenljus än i vanlig glödlampe- eller lysrörsljus.
Har det något med våglängder att göra?
/Louise  N,  Klöverbackens skola,  Kungälv 2009-01-09
Svar:
Louise! Skönhet ligger i betraktarens öga :-). Jag tror inte det har så mycket att göra med vilka våglängder ljuskällan sänder ut - för ögat är det inte så stor skillnad på de ljuskällor du nämner. Jag tror att det är viktigare att ljuskällan är liten (nära punktformig) och inte diffus (utbredd). Om du t.ex. har ett stearinljus som källa får du en massa spegelbilder av ljuslågan i diamanten. Det ser mycket vackrare ut är spegelbilden av t.ex. ett lysrör.

En del av ljuset kommer även till ögat efter att ha passerat genom delar av diamanten och därmed delats upp i olika färger som ett spektrum. Om ljuskällan är stor kommer spektrum att bli otydligt (de olika färgerna överlappar och ger intryck av vitt ljus). Det är därför man har en smal ingångsspalt i en spektrograf.

Se även fråga [14331].
/Peter E 2009-01-09


Varför har ljuset så många olika färger?

Grundskola_4-6: Ljud-Ljus-Vågor - färg/färgseende, ljus [16135]
Fråga:
Varför har ljuset så många olika färger?
/Allan  E,  alviksskolan,  bromma 2009-04-27
Svar:
Allan! Först måste vi fundera på vad är färg? Det är en benämning vi hittat på för synintryck från ljus av olika våglängder. Färg har alltså att göra med hur ögat skiljer på olika våglängder. I det mänskliga ögat finns det tre typer av färgkänsliga receptorer, s.k. tappar. Känsligheten för dessa framgår av figuren i fråga 13824 nedan. Vi har alltså en typ av tappar som i huvudsak är känslig för rött (som vi kallar r), en som är känslig för grönt (g) och en för blått (b). Det är då balansen mellan stimuleringen av r, g och b som avgör vilken färg vi uppfattar.

Det är ingen tillfällighet att tapparna är känsliga för just dessa våglängder: de ligger omkring maximum intensitet i solens spektrum och de absorberas inte av atmosfären. Tappar känsliga för helt andra våglängder skulle vara utan värde, så de skulle inte ha utvecklats.

Med tre olika sortes receptorer finns det många möjliga kombinationer, så därför finns många färger. Sedan är det ganska godtyckligt hur många färger vi givit namn (mörkvitt förekommer t.ex. bara i Bengt Grives konståkningsreferat). Men om vi bara haft två typer av tappar, så hade vi uppfattat färre färger, se Color_blindness och bilden nedan från Wikimedia Commons. I är hur en person med normalt färgseende uppfattar den amerikanska flaggan. Om r-tapparna fattas ser flaggan ut som II, dvs utan den röda färgen. Om man bara har en sorts fungerande tappar uppfattar man bara en gråskala som flaggan V.

Se vidare färg/färgseende, länk 1 nedan, Färgseende och Color_vision. I fråga [5381] finns lite om färgblindhet.

Question Image

Länkar: http://www.moderskeppet.se/grundlaggande_farglara.asp
/Peter E 2009-04-27


Kan LED-lampor vara skadliga?

Fråga:
Inverkan av monokromatiskt ljus på människan.

Hej, med anledning av kommande förbud mot kvicksilverlampor, och allmän energibesparing, är det tänkt att till stor del ersätta dessa med LED-lampor.

1. Vilket spektra har det monokromatiska vita ljus som utsänds av LED? Vad är detta för en paradox, då vitt ljus består av "alla" frekvenser och monokromatiskt ljus defineras av singel-frekves-strålning?

2. Finns det någon forskning på monokromatisk ljusets inverkan på mäniskan/organismer under lång tid, även då pulserande monokromatiskt ljus (LED-dimmer använder frekvenser mellan 10KHz-30KHz)? Jag tänker här närmast på påverkan på ögats/hjärnans reseptorer och produktion av Melatomin, Kortisol och andra ämnen ( även Ljus & Färg terapi - undantaget behandling av hudåkommor med monokromatiskt pulserande ljus av hög effekt, förutom möjligtvis forskning på skyddsutrustning för dessa).

3.Vad vet vi om effekterna av (super-)högeffektiva LED och dess påverkan på ögat (jämfört med Laser)? Jag tänker närmast på skadligheten av att titta rätt på ljuskällan, om den inte är försedd med skyddsglas eller på annat sätt reflekteras - finns det någon som helst information eller rekomendation/reglering innom EU idag?

Tacksam för något att nysta vidare på...
/Manfred  B,  Mölndal 2009-05-05
Svar:
1 Det finns i princip två sätt att åstadkomma vitt ljus med en lysdiod (LED).

a Antingen har man en LED för varje grundfärg (röd, grön, blå), se nedan. Om man blandar ljuset från dessa får man vad som av ögat uppfattas som vitt ljus (se färg/färgseende). Detta är samma teknik som man använder sig av i en TV. Spektrum är en topp vid vardera rött, grönt och blått, alltså ingalunda kontinuerligt.

b Eller så har man en blå (eller UV) LED och fluorescerande material. Man får då en kontinuerlig våglängdsfördelning som visas i figuren i fråga [12571]. Våglängdsfördelningen är ingalunda den normala från temperaturstrålning (solen, glödlampor), se fråga [12564].

2 Jag tror inte det finns någon forskning om inverkan från LED-ljus. Typ a bör knappast vara farlig, och så höga frekvenser uppfattas inte av ögat (för en bildskärm anses 100 Hz ge stadigt ljus). Men är det skadligt? Det vet man inte säkert. Typ b kan vara skadliga om alltför mycket av UV-ljuset kommer ut.

3 Vet jag i varje fall ingenting om. När LED blir vanligare kommer det säkert fram larm som det gjort om farligheten hos bildskärmar, mobiltelefoner, fält från kraftledningar mm. Jag har en känsla av att vi börjar använda nya uppfinningar, och i en del fall när de visar sig skadliga (t.ex. röntgen och radioaktivitet) så inför vi restriktioner i efterhand. Om varje tillverkare absolut säkert skulle kunna bevisa att hans produkt är säker, så skulle vi inte få några nya produkter. Men farlig som en stark laser med koherent ljus (samlat även på stora avstånd) är den säkert inte. Man skall ju kunna använda den för belysning och displayer!

Se vidare bra artiklar med fler länkar i Wikipedia: Light-emitting_diode och LED_lamp. Lysdiod är på svenska, men inte lika bra.

Question Image

Länkar: http://www.etn.se/index.php?option=com_content&view=article&id=57126&via=r
/Peter E 2009-05-05


Ljuset bryts ju när det går från luft till glas. Hur kommer det sig då att inte allting ser ändrat ut när man tittar ut genom fönstret?

Grundskola_7-9: Ljud-Ljus-Vågor - ljus, ljusbrytning [16457]
Fråga:
Ljuset bryts ju när det går från luft till glas. Hur kommer det sig då att inte allting ser ändrat ut när man tittar ut genom fönstret?
/maria  z,  göingeskolan,  broby 2009-10-07
Svar:
Maria! Mycket bra fråga! Den orsakade oss en hel del huvudbry :-)! Problemet är lite besläktat med kromatisk aberration (Chromatic_aberration) vilket är ett bildfel hos en lins. Först kan man konstatera att du om du tittar ut vinkelrätt mot rutan, så händer inget. Ljuset går rakt igenom. Om du däremot tittar i en vinkel på säg 45o så finns det en liten effekt.

Eftersom glasytorna på fram och baksidan av rutan är parallella, så kommer en enfärgad stråle inte att ändra riktning: brytningen i en första ytan kompenseras exakt av en motsatt brytning i den andra ytan. Vad som alltså händer är att allt du ser genom rutan blir lite förskjutet i sidled, se nedanstående figur.

Om vi emellertid har olika färger, så är ju brytningsindex lite olika. Enligt figuren i Index_of_refractionDispersion_and_absorption är brytningsindex för den nedersta glassorten 1.49 för rött ljus och 1.50 för blått. Vi kan med hjälp av brytningslagen beräkna vinkeln a (infallsvinkeln i är 45o) för rött ljus och för blått ljus:

Blått: sin(45)/sin(a) = 1.50/1

dvs a = 28.13

Rött: sin(45)/sin(a) = 1.49/1

dvs a = 28.33

Förskjutningen x från ingång till utgång för en 5 mm tjock ruta ges av

x = 5tan(a)

Vi får alltså för blått ljus

x = 5tan(28.13) = 2.673 mm

På samma sätt får vi för rött ljus x = 2.695 mm

Skillnaden i utträdespunkt blir alltså 2.695 - 2.673 = 0.022 mm.

Avståndet mellan den blå och den röda strålen blir då 0.022sin(45) = 0.016 mm = 16 mikrometer.

Enligt länk 1 är det typiska avståndet mellan tapparna i ögat c:a 10 mikrometer. Effekten är alltså mycket liten men bör kunna observeras under gynnsamma förhållanden. Vad man behöver är en liten och stark vit ljuskälla. Om man betraktar denna med mycket snett infall bör man kunna se ett litet spektrum med rött i ena änden och blått i den andra. Men effekten är så liten att man inte märker den under normala förhållanden.

Question Image

Länkar: http://www.cis.rit.edu/people/faculty/montag/vandplite/pages/chap_9/ch9p1.html
/Peter E 2009-10-08


Hur har man kommit fram till att fotonens energi är W=hf?

Fråga:
Hej!
hur har man kommit fram till att fotonens energi är W=hf, där h är planks konstant och f är frekvensen? finns det en svensk länk där man kan läsa om det i djupet tack!!
/Ali  Z,  malmö borgarskolan,  malmö 2010-02-23
Svar:
Hej Ali! Bra fråga! Formeln för fotonens energi

E = hv (av konvention använder man oftast v [grekiska ny] för fotonens frekvens)

är ju så djupt rotad i den moderna fysiken att man kanske glömmer vad den kommer ifrån.

När det gäller fysikaliska samband uppkommer de typiskt på ett av två sätt:

1 ett experimentellt uppmätt samband eller lag

2 ett antagande som leder till andra samband som kan verifieras experimentellt

eller en kombination av 1 och 2


När det gäller fotonens energi är det till att börja med fall 2: Max Planck (Max_Planck) gjorde antagandet att energin var proportionell mot frevensen för att härleda ett fungerande uttryck för den den experimentellt observerade fördelningen hos temperaturstrålning (1900), se Plancks strålningslag, speciellt fråga [12397] och Planck's_law (den senare på engelska).

Bilden nedan från Wikimedia Commons Ultraviolet_catastrophe) visar uppmätt temperaturstålning för tre olika temperaturer (nedre kurvorna). Den övre, svarta kurvan visar den klassiska förutsägelsen (Rayleigh–Jeans law). Som synes avviker den senare mycket från den observerade fördelningen, speciellt för korta våglängder.

Plancks uttryck representerade uppmätta data mycket bra även för korta våglängder. Plancks antagande att energin var given av strålningens frekvens var en avvikelse från den klassiska teorin där energin gavs av amplituden hos strålningen. Utan att veta det förebådade Planck den kommande kvantmekaniken.

Einstein var i sin artikel om fotoelektriska effekten (1905) mycket tydlig med kvantiseringen, och införde begreppet foton för en "ljus-partikel". I fråga [2931] visas data för fotoelektriska effekten som visar proportionaliteten mellan energi och frekvens.

Det mest direkta beviset kom genom Bohrs atommodell (1913). Man kunde bygga upp energidiagram där skillnaden i energin mellan två tillstånd var lika med energin hos fotonen som utsändes vid en övergång. Man kunde mäta våglängden och med hjälp av det generella sambandet mellan vågens utbredningshastighet c, våglängden l och frekvensen v

c = lv

verifiera proportionaliteten mellan energi och frekvens. Senare infördes namnet Plancks konstant h för denna proportionalitetskonstant.

År 1923 verifierade Arthur Compton sambandet återigen genom sitt experiment att sprida fotoner på elektroner, se comptonspridning.

Länk 1 är en intressant artikel om Max Planck och länk 2 beskriver den historiska utvecklingen av atomteorin.

/fa

Question Image

Länkar: http://www.fof.se/tidning/2002/3/max-planck  |  http://www.pixe.lth.se/bossen/fysik/history1.htm
/Peter E 2010-02-23


Sida 5 av 7

Föregående | Nästa

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

** Frågelådan är stängd för nya frågor tills vidare **
Länkar till externa sidor kan inte garanteras bibehålla informationen som fanns vid tillfället när frågan besvarades.

Creative Commons License

Denna sida från NRCF är licensierad under Creative Commons: Erkännande-Ickekommersiell-Inga bearbetningar