Vill du ha ett snabbt svar - sök i databasen:

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

4 frågor / svar hittades

Varför är himlen ibland blå och ibland röd?

Fråga:
Hej. Om det är av samma orsak som himlen ibland är röd som
den ibland är blå, borde den då inte också lika ofta vara
grön, då grön ligger mellan blå och röd i färgspektrat.
Vad beror annars de olika färgerna på?
/Mats  L,  Pauliskolan,  Malmö 1997-11-20
Svar:
Mycket intressant fråga! Svaret är att himlen
kan vara grön, det är bara det att det är sällsynt.
Låt oss försöka reda ut de olika färgerna:


Mitt på dagen är himlen blå. Det beror på att
solljuset sprids av luften, och blått ljus sprids
mer än rött och gult. Eftersom det är spritt
ljus, så är det också polariserat.


Försök:
Sätt på dig ett par polarisationssolglasögon. Titta
på en punkt 90 grader (ett kvarts varv) från solen.
Vrid på huvudet. Kan du se att himlen blir mörkare
när huvudet är i ett visst läge?


När solen håller på att gå ner, så har solljuset så lång
väg att gå igenom atmosfären, att det blå ljuset är helt
försvunnet (spritts bort). Det enda du ser då är det
röda ljuset som sprids - du har en vackert röd solnedgång.


I ett mellanläge kan man ibland se att himlen är grön, men det är, som sagt, ganska ovanligt.

Se även snackset Varför är himlen blå?.

Länkar: http://science.howstuffworks.com/question39.htm
/Peter Ekström 1997-11-30


Tre polarisationsfilter

Gymnasium: Ljud-Ljus-Vågor - ljus, polarisation [5528]
Fråga:
En komplicerad fråga......
Vi har precis satt upp tre polaroidfilter,
Det första och det sista är vinkelräta mot varandra (= svart)
MEN det tredje som sitter i mitten är vinklat ca 45 grader och då
släpps ljuset igenom........
Hur blir det så???? vrids ljuset på något konstigt sätt????
/Jonas  P,  Rudbecksgymnasiet,  Tidaholm 2000-04-27
Svar:
Fall 1: Vi analyserar opolariserat ljus med det första filtret. Hälften
kommer igenom, och nu är det linjärpolariserat (Figur 1 nedan). Eftersom det andra filtret
är orienterat vinkelrät, kommer inget ljus igenom det (Figur 2).

Fall 2: (Figur 3) Samma resonemang för det första filtret. Det andra filtret är nu orienterat i 45o. Vi delar upp ljuset från första filtret i två vinkelräta komponenter i 45o och 135o med amplituden 1/20.5 vardera. Den ena blir helt absorberad av filter 2 (som ju står i 45o), den andra släpps igenom oförändrad. Intensiteten som släpps igenon filter 2 blir då 1/2. För filter 3 blir resonemanget precis det samma. Multiplicerar vi de 3 transmissionsvärdena, får vi att (1/2)(1/2)(1/2) = 1/8 av ljuset kommer igenom. Här bortser vi från förluster genom reflektion.

Se även fråga [12347] och detaljerade förklaringar på engelska under länk 1 och länk 2. Figuren nedan (© Copyright 2004 Darel Rex Finley) är delvis lånad från länk 1.

I undre delen av nedanstående figur visas hur det ser ut med riktiga polarisatorer.

Question Image

Länkar: http://alienryderflex.com/polarizer/  |  http://www.informationphilosopher.com/solutions/experiments/dirac_3-polarizers/
/KS/lpe 2000-04-27


Hur tar polaroidglasögon bort reflexer?

Fråga:
När ljus reflekterat svänger det bara i ett plan och därför kan vi slippa reflexer med polaroidglasögon. Jag förstår hur glasögonen fungerar, men inte varför reflexionen gör ljuset polariserat. Hoppas ni kan hjälpa mig med det.
/Eva  B,  Sandagymnasiet,  Huskvarna 2003-10-03
Svar:
Vid reflexion ändras både ljusets intensitet och polarisation.
När en ljusstråle träffar
gränsytan på ett genomskinligt medium kommer en del av
ljuset att brytas och en
del av ljuset att reflekteras. Om ljuset faller in mot gränsytan så att den brutna
strålen och den reflekterade strålen är vinkelräta mot varandra,
så kommer det
reflekterade ljuset att vara planpolariserat.
Infallsvinkeln som uppfyller sambandet, och alltså ger 100% polariserat reflekterat ljus,
kallas för
brewstervinkeln.

Om det i brewstervinkeln infallande ljuset är planpolariserat vinkelrätt mot infallsplanet kommer allt ljus att brytas ner i mediet med högre brytningsindex och inget ljus reflekteras.

Vi tar en mycket enkel modell av spridningen, se nedanstående figur: den inkommande vågens E-fält (som definieras som polarisationsriktningen) sätter elektroner i svängning i gränsytan. Komponenten som är parallell med normalen får elektronerna att svänga nästan i den riktning som den reflekterade strålen går (exakt för Brewstervikeln). En dipol strålar inte i denna riktning. Det betyder att den med infallsplanet parallella komponenten inte reflekteras, utan måste gå in i mediet. Den andra komponenten - som reflekteras utmärkt - tas om hand av polaroidglasögonen. Alltså ser vi inget reflekterat ljus.

Se vidare Brewster's_angle.

Question Image

/Peter E 2003-10-03


Hur alstras det polariserade ljuset som kommer från himlen?

Fråga:
Hur alstras det polariserade ljuset som kommer från himlen?
Jag har studerat ljuset med hjälp av polarisationsfilter.
Det är inte hela himlen som är polariserad utan polariseringen går som ett band över himlen, vinkelrätt mot solstrålarna, som ett bildäck. Det är tydligast på morgon och kväll, ett välkänt fenomen.

Min tolkning är följande. Det är det blå ljuset från himlen som är polariserat. Jag misstänker att det är syre, ozon eller kväve, alltså en molekyl med dubbel eller trippelbindningar, som svarar för polariseringen och skickar ut infallande ljus vinkelrätt mot infallsvinkeln. Om det infallande ljuset är blått, ultraviolett eller ännu kortvågigare har jag ingen idé om.
Det blå ljuset på himlen kommer från ozon, men det är fluorescens. Det har nog inget med polariseringen av ljuset att göra.

Jag är pensionerad biologilektor från Polhemskolan här i Lund. Jag följer fågelsträcket i Falsterbo och läser om frågor om fåglarnas orientering, hobbyforskning. Fåglar uppfattar polariserat ljus. Läste på 70-talet 20 poäng fysik med resultatet mvg, och lite fysik sitter fortfarande kvar.
Jag är tacksam för tips om litteratur om polarisering av himlen.
Finns det någon som kan hjälpa mig?
Mycket tacksam för någon form av svar.
/Ingvar  l,  f.d. Polhemskolan,  Lund 2004-10-21
Svar:
Ingvar! Vi har svarat flera gånger på frågan varför himlen är blå (se nedanstående avancerade sökning), men inte i detalj gått in på processen och varför det spridda ljuset är polariserat.

Anledningen till att himlen är blå är att solljuset (bestående av alla färger, dvs i princip vitt) sprids av luftens molekyler i en process som kallas Rayleigh-spridning (NE: spridning av ljus mot partiklar som är mycket mindre än ljusets våglängd, t.ex. luftens molekyler), se nedanstående figur. (Observera att solen är vit, inte gul!) Figuren ger också uttrycket för sannolikheten för spridning som funktion av spridningsvinkeln q och ljusets våglängd l.

Förutom några konstanter består spridningssannolikheten av två termer:

1/l4

Ljus av kort våglängd sprids allså mycket mer är ljus av lång våglängd. Om vi jämför blått ljus (4500 Å) med rött ljus (6500 Å) får vi förhållandet (6500/4500)4=4.4. Blått ljus sprids alltså betydligt mer än rött. Det är anledningen till att himlen ser blå ut.

(1 + cos2q)

Denna term säger att intensiteten av det spridda ljuset är minst 90o från solen. I själva verket är intensiteten i 90o precis hälften av intensiteten i 0o. Detta ger en indikation av vad som orsakar denna term: polarisationen. Ljuset från solen är opolariserat och kan ses som två polarisationsriktningar med samma intensitet vinkelräta mot varandra. I
90o kan endast den ena riktningen spridas. Intensiteten där blir alltså hälften. För att bekräfta teorin kan man kontrollera ljusets polarisation i olika riktningar (olika spridningsvinklar). Man finner då att polarisationsgraden är maximal 90o från solen.

Fåglar, som kan uppfatta polarisation utan hjälpmedel (t.ex. polarisationsglasögon) kan alltså bestämma riktningen mot solen även när denna skyms av moln.

Kan man förstå varför bara den ena polarisationsriktningen kan spridas i 90o? Ja, det är ganska lätt att ge en enkel bild av processen om man vet hur en dipol (enkel, rak sändarantenn) sänder ut strålning. En dipol strålar maximalt i 90o och inte alls i 0o.

Vi delar det infallande solljuset i två polarisationskomponenter - polarisationsriktningen för elektromagnetisk stålning är E-vektorns riktning: vinkelrätt mot synlinjen och parallellt med synlinjen. Ljus som faller in med polarisationsriktningen i synlinjen kommer att få elektroner att svänga i synlinjen. Dessa dipoler kan alltså inte stråla i synlinjen. Ljus som däremot faller in med polarisationsriktningen vinkerätt synlinjen kommer att få elektroner att svänga vinkelrätt mot synlinjen. Dessa dipoler kan alltså att stråla maximalt synlinjen. Alltså ser vi bara den senare hälften, och det spridda ljuset är polariserat.

Rayleigh-spridning är helt oberoende av vilka molekyler vi har eftersom alla molekyler är ungefär lika stora. Processen är alltså inte fluorescens (NE: en form av luminiscens [utsändande av ljus] från ett system) utan i princip elastisk spridning mot bollar utan inre struktur.

Se även snackset Varför är himlen blå? och nedanstående länk.

Question Image

Länkar: http://hyperphysics.phy-astr.gsu.edu/hbase/atmos/blusky.html
/Peter E 2004-10-22


| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

** Frågelådan är stängd för nya frågor tills vidare **
Länkar till externa sidor kan inte garanteras bibehålla informationen som fanns vid tillfället när frågan besvarades.

Creative Commons License

Denna sida från NRCF är licensierad under Creative Commons: Erkännande-Ickekommersiell-Inga bearbetningar