För att förstå bakgrunden till transmutation är det nyttigt att titta på de problem som finns med kärnenergin som vi utnyttjar den nu:
Idén med transmutation är att man tillför extra neutroner
utifrån. Dessa produceras genom att man låter en stråle
med protoner från en partikelaccelerator träffa ett
strålmål och producera neutroner genom s.k.
vi kan underhålla en kedjereaktion med mindre mängd uran
i reaktorn - reaktorn är "underkritisk", vilket innebär
att så snart vi stänger av acceleratorn (det kan vi alltid
göra - det är bara att dra ur "sladden"), så har vi
ett snällt hanterbart system, som inte kan ge upphov till en härdsmälta.
En annan fördel är att vi kan "förbränna" (transmutera) allt
radioaktivt material, och vi kan på så sätt bli av
med avfallet.
En tredje fördel är att vi kan använda thorium som bränsle.
Det finns mycket mer thorium än uran (speciellt eftersom
vanliga reaktorer bara använder mindre är 1% av uranet -
isotopen U-235), varför vi har en i praktiken outtömlig
energikälla som dessutom är säker och inte ger upphov till
radioaktivt avfall.
Figuren nedan visar principen för ett system för transmutation som även producerar elektricitet.
Paragraf sex i lagen om kärnteknisk verksamhet lyder: Ingen får utarbeta konstruktionsritningar, beräkna kostnader, beställa utrustning eller vidta andra sådana förberedande åtgärder i syfte att inom landet uppföra en kärnreaktor.Riksdagen måste ändra denna lag innan verkligt
Gemenligen kallad "Lex Birgitta Dahl" - oåterkallerlig.
Ämnet är relativt nytt och det mesta som finns skrivet
är på engelska och ganska tekniskt. Länken, som
uppdateras kontinuerligt, ger en lista på de websites
vi hittat.
Detta resonemanget gäller när reaktorn startas första gången. Ska reaktorn
startas efter ett stopp, finns vissa klyvningsprodukter som absorberar
neutroner mycket effektivt, till exempel 135Xe. Vid normal
drift förstörs den isotopen kontinuerligt, men stoppar man reaktorn,
bildas en avsevärd mängd, som gör det svårt att starta reaktorn igen. Då brukar man "tända" reaktorn med en yttre neutronkälla.
För att kärnklyvningen ska pÃ¥gÃ¥, krävs ett ganska invecklat arrangemang för att bromsa upp neutronerna. I ett löst bränsleelement pÃ¥ fabriken finns ingen risk för kedjereaktion. Detta gäller lÃ¥ganrikat uran. Â
2025-08-13
Three Mile Island (TMI) är ett sedan september 2019 nedlagt kärnkraftverk, som ligger vid Susquehannafloden i Londonderry Township, Dauphin County, Pennsylvania i USA. Anläggningens första reaktor togs i drift 1974 och stängdes i september 2019. Reaktor nummer 2 som startades 1978 totalförstördes 1979 i en härdsmälta, i folkmun kallad Harrisburgolyckan. (Three_Mile_Island)
Tjernobylkatastrofen var en mycket allvarlig reaktorolycka i kärnkraftverket i Tjernobyl norr om Kiev i Ukraina (som då var en Sovjetrepublik). Olyckan inträffade natten till lördagen den 26 april 1986 klockan 01.23.45,[1] (lokal tid) när reaktor fyra i utkanten av staden Prypjat förstördes genom en explosion och ett moln med radioaktiva partiklar spreds med vindarna över stora delar av Europa. (Tjernobylkatastrofen)
Fukushima-olyckan avser en serie haverier och utsläpp av radionuklider vid kärnkraftverket Fukushima I som följde jordbävningen vid Tohoku den 11 mars 2011.
Tre av verkets sex block var vid tillfället i drift och snabbstoppades, då jordbävningen slog ut det yttre elnätet. Den tsunami, som följde 56 minuter efter jordbävningen, slog ut de reservgeneratorer som användes för reaktorernas kylning. Endast batterikraft återstod då och ungefär 50 minuter senare upphörde nödkylsystemet att fungera i block 1 och 2 och efter ytterligare 1,5 dygn även i block 3. Därefter saknade såväl härdar som bränslebassänger kylning, vilket ledde till partiella härdsmältor med vätgasexplosioner och utsläpp av radioaktiva ämnen som följd. (Fukushima-olyckan)
Fjärde generationens reaktor (Gen IV) är en benämning för sex olika typer av kärnreaktordesign, som valts ut som särskilt lovande för framtida reaktorer. De är för närvarande föremål för intensiv forskning. Reaktorerna avses användas i kärnkraftverk för att som i dag främst ta tillvara elektrisk energi från kärnbränslen. (Fjärde generationens reaktor)
Denna sida frÃ¥n NRCF är licensierad under Creative Commons: Erkännande-Ickekommersiell-Inga bearbetningar