Vill du ha ett snabbt svar - sök i databasen:

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

9 frågor / svar hittades

Berätta om transmutation av kärnavfall!

Fråga:
Jag läser om kärnkraft, och jag tycker att
transmutation av radioaktivt avfall verkar vara något bra. Vad är problemen? Varför kan man inte omvandla det instabila uranet till tex. bly och få ut energi?
Var kan jag läsa mer om forskning på transmutationer? /Nanna
/Nanna  T,  UmeÃ¥ 1998-05-01
Svar:
Detta är ett ganska tekniskt ämne, men vi skall försöka förklara det så enkelt som möjligt.



För att förstå bakgrunden till transmutation är det nyttigt att titta på de problem som finns med kärnenergin som vi utnyttjar den nu:


  • Den ger upphov till lÃ¥nglivat radioaktivt avfall som är
    besvärligt att bli av med på ett säkert sätt.


  • Kärnkraftreaktorer kan haverera och ge upphov till
    allvarliga skadeverkningar. Orsaken till detta är att man
    måste samla mycket (många ton) klyvbart uran i en liten volym för att
    kedjereaktionen skall kunna underhållas. Detta ger upphov till
    två problem:

    1. Reaktorn kan om man förlorar kontrollen bli "överkritisk"
      (varje generation neutroner från fissionsprocessen producerar
      fler neutroner som ger upphov till fission) och rusa iväg. I
      de flesta reaktorer som finns i dag så upphör denna "rusning"
      dock av sig själv, men reaktorn kan förstöras.
    2. Även om fissionsprocessen upphör (vilket den gör om en
      reaktor havererar), så måste man fortsätta att kyla bränslet
      under flera timmar. Om man inte gör det får man vad man kallar
      en härdsmälta. Har man otur så kan det radioaktiva materialet
      i härden komma ut i omgivningen. Olyckan i Three-Mile-Island
      var en härdsmälta, men den kraftiga inneslutningen, som finns
      i de flesta moderna reaktorer, höll, och ingen radioaktivitet
      kom ut i omgivningen.


Det grundläggande säkerhetsproblemet med våra nuvarande reaktorer är allså att de måste innehålla mycket uran. Om man försökte göra
en mindre reaktor, så skulle alltför många neutroner läcka ut ur
reaktorn, och vi kan inte vidmakthålla kedjereaktionen.



Idén med transmutation är att man tillför extra neutroner
utifrån. Dessa produceras genom att man låter en stråle
med protoner från en partikelaccelerator träffa ett
strålmål och producera neutroner genom s.k.
spallation (sönderdelning - man slår alltså i princip sönder atomkärnorna i sina beståndsdelar neutroner och protoner, se SpallationNuclear_spallation). Reaktorn placeras nära strålmålet, och de extra neutronerna medför att
vi kan underhålla en kedjereaktion med mindre mängd uran
i reaktorn - reaktorn är "underkritisk", vilket innebär
att så snart vi stänger av acceleratorn (det kan vi alltid
göra - det är bara att dra ur "sladden"), så har vi
ett snällt hanterbart system, som inte kan ge upphov till en härdsmälta.



En annan fördel är att vi kan "förbränna" (transmutera) allt
radioaktivt material, och vi kan på så sätt bli av
med avfallet.



En tredje fördel är att vi kan använda thorium som bränsle.
Det finns mycket mer thorium än uran (speciellt eftersom
vanliga reaktorer bara använder mindre är 1% av uranet -
isotopen U-235), varför vi har en i praktiken outtömlig
energikälla som dessutom är säker och inte ger upphov till
radioaktivt avfall.



Figuren nedan visar principen för ett system för transmutation som även producerar elektricitet.



Detta låter nästan för bra för att vara sant! Vi
löser alla problem med den nuvarande kärnkraften och får
en outtömlig energikälla! Det finns emellertid olösta
(med antagligen inte olösliga) problem:

  • Idén är ganska ny, och det krävs ett lÃ¥ngt
    och dyrt utvecklingsarbete för att realisera den.
  • Man mÃ¥ste kunna utföra en kemisk separation av
    olika grundämnen i bränslet: de stabila och kortlivade
    ämnena kan slutförvaras, medan långlivade radioaktiva ämnen måste föras tillbaka till transmutationsreaktorn.
  • Bara ett till synes enkelt problem som att göra
    ett strålmål som tål en mycket intensiv bestrålning
    med protoner är inget trivialt. Man arbetar nu
    med ganska komplicerade system med en blandning av
    bly/vismut i flytande form.
  • I Sverige har vi ytterligare ett problem:
    utveckling av ett transmutationssystem är olagligt
    enligt den beryktade "tankeförbudsparagrafen":
    Paragraf sex i lagen om kärnteknisk verksamhet lyder: Ingen får utarbeta konstruktionsritningar, beräkna kostnader, beställa utrustning eller vidta andra sådana förberedande åtgärder i syfte att inom landet uppföra en kärnreaktor.
    Gemenligen kallad "Lex Birgitta Dahl" - oåterkallerlig.
    Riksdagen måste ändra denna lag innan verkligt
    utvecklingsarbete kan komma igång i Sverige. (Tillägg: Lagen är numera avskaffad)

Numera bedrivs forskning om transmutation i ganska stora projekt i flera länder. Än så
länge får man nog betrakta dessa som "förstudier".


Ämnet är relativt nytt och det mesta som finns skrivet
är på engelska och ganska tekniskt. Länken, som
uppdateras kontinuerligt, ger en lista på de websites
vi hittat.

Länkar: http://www.pixe.lth.se/links/search.asp?class2=%267%3B&sForm=true
/Peter Ekström 2002-10-10


Grundskola_7-9: Energi - kärnenergi [1537]
Fråga:
Vi har några frågor som jag skulle vilja få svar på
Vi har ämnet "Kärnkraftverk"
1. Hur många kärnkraftverk finns det i hela Europa?
2. Hur många av dom kan på verka vårt liv och vår miljö,
Om en av dem skulle explodera?
3. Hur stor risk är det att det händer en ny "Tjernobyl"
/Martin  H,  Killebäck,  Lund 1998-10-07
Svar:
Du ska få en karta, där du kan räkna själv, se länk 1 nedan. Klicka på de röda prickarna för mer detaljer.
De flesta reaktorerna är lättvattenreaktorer, och de kan inte explodera som Tjernobyl-reaktorn.
Men de kan smälta ned, och det är också farligt. Reaktorerna i
västeuropa ligger inkapslade i flera skal, som förhoppningsvis skyddar
oss i ett sådant läge. Risker är svårt att uttala sig om. Kraftverket i Ignalina i Litauen har reaktorer
av Tjernobyl-typ.

Denna sajt innehåller mycket information om kärnkraftverk: The Virtual Nuclear Tourist ! Nuclear Power Plants Around the World. Länk 2 ger fler länkar. Kärnbränslecykeln innehåller mycket information framför allt om bränslet. Power Reactor Information System är den ultimata databasen med allt man kan vilja veta och lite till!

Kärnkraftverk innehåller kort historik och annan information om kärnkraft.
Länkar: http://news.bbc.co.uk/2/hi/europe/4713398.stm  |  https://fragelada.fysik.lu.se/index.php?keyword=k%C3%A4rnenergi
/KS/lpe 1999-10-11


Hur startas kärnklyvningen i ett kärnkraftverk

Grundskola_7-9: Blandat - kärnenergi [2695]
Fråga:
Jag har en elev som undrar hur kärnklyvningen sätts igång i ett kärnkraftverk från första början. Varifrån kommer den första neutronen? Varför startar inte kärnklyvningen redan i fabriken där bränslet tillverkades?
/Maria  B,  Vasaskolan,  Skövde 1999-02-08
Svar:
Reaktorbränslet består till 97% av 238U och till 3% av 235U. Det som klyvs när reaktorn är igång är 235U. Långsamma neutroner kan inte klyva 238U, men denna isotop kan i sällsynta fall (en gång på miljonen) sönderfalla
genom spontan fission (klyvning), och då bildas flera neutroner. Man kan räkna ut, att i 1 kg uran produceras på detta sätt över 1000 neutroner per sekund. I en kärnreaktor produceras flera miljoner neutroner per sekund innan den startat.


Detta resonemanget gäller när reaktorn startas första gången. Ska reaktorn
startas efter ett stopp, finns vissa klyvningsprodukter som absorberar
neutroner mycket effektivt, till exempel 135Xe. Vid normal
drift förstörs den isotopen kontinuerligt, men stoppar man reaktorn,
bildas en avsevärd mängd, som gör det svårt att starta reaktorn igen. Då brukar man "tända" reaktorn med en yttre neutronkälla.


För att kärnklyvningen ska pågå, krävs ett ganska invecklat arrangemang för att bromsa upp neutronerna. I ett löst bränsleelement på fabriken finns ingen risk för kedjereaktion. Detta gäller låganrikat uran.  
2025-08-13



Vad händer med den värmeenergi som kommer från tex en hårtork

Gymnasium: Energi - energikällor, kärnenergi [14319]
Fråga:
Hej!
Jag undrar vad som händer med den värmeenergi som kommer från tex en hårtork. Värmer den upp vår jord eller vad blir det med den eftersom värme är den lägsta energiformen?
Och en lite fråga till: Hur räknar man ut antal hästkrafter som en bil har?
/Sarah  A,  Lillerudsgymnasiet,  VÃ¥lberg 2005-11-30
Svar:
Sarah! Intressant fråga som är mer komplex än vad man kan tro! Det beror på var elektriciteten som driver hårtorken kommer ifrån.

Om den kommer t.ex. från vattenkraft, vindkraft eller solkraft så är det bara en omfördeling av värmeenergin. Den värme som skulle ha utvecklats vid kraftverket (och som kraftverket "stal") utvecklas i ditt sovrum i stället. Under största delen av året behöver vi i Sverige ändå värma upp våra bostäder, så värmeenergin är inte bortslösad.

Om el-energin kommer från kärnkraftverk är det lite annorlunda. Kärnkraftverken tar energi från urankärnorna och i slutändan blir all denna energi till värme. Utan kärnkraftverk hade urankärnorna bevarats och denna energi alltså stannat där. Energiutvecklingen från alla kärnkraftverk är emellertid mycket liten jämförd med den energi som kommer från solen. Låt oss se om detta är sant:

Enligt Power Reactor Information System är det totala elekriska effekten för alla världens kärnkraftevert 369 GW(e). Med en verkningsgrad på c:a 30% blir detta ungefär 1000 GW eller 1 TW (terawatt=1012 W) termisk effekt.

Instrålningen av energi per sekund och m2 från solen ges av solarkonstanten = 1368 W (se solarkonstanten).

Jordens yta (genomskärningsytan) är

pR2 = p(6.38106)2 = 1281012 m2

Effekten från solstålningen blir då

1281012 1368 = 1750001012 W = 175000 TW.

Detta är ganska mycket större är de 1 TW från kärnkraften, så uppvämningen av jorden pga kärnkraft är säkert försumbar - det finns andra viktigare skäl till att jordens temperatur antagligen ökar lite.

Se vidare
energikällor, kärnenergi, vattenkraft, växthuseffekten. Se även fråga 14321.

Man bestämmer normalt effekten hos en bilmotor med en motor-dynamometer som är en sorts kalibrerad broms, se länk 1 för detaljer.
Länkar: http://www.pumaracing.co.uk/power3.htm
/Peter E 2005-11-30


Hur avbryter man kedjereaktionen i ett kärnkraftverk?

Grundskola_7-9: Energi - kärnenergi [14320]
Fråga:
hej! jag undrar hur man avbryter kedjereaktionen i ett kärnkraftverk? vad använder man och hur kontroller man det som stänger av den?
/siri  l,  asken,  strängnäs 2005-11-30
Svar:
Hej Siri! Ett kärnkraftverk i normaldrift körs med en exakt balans mellan producerade neutroner (i fissionsprocessen) och konsumerade neutroner (de som orsakar fission, bara fångas in i bränslet eller moderatorn, försvinner ut från reaktorhärden mm). En liten ökning i borttagna neutroner gör att reaktorn går ner i effekt för att slutligen stanna. Denna ökning i borttagna neutroner åstadkoms med sk styrstavar.

Styrstavarna går i mellanrummet mellan bränslestavarna rakt igenom reaktorn och innehåller ett ämne som absorberar neutroner, vanligtvis bor eller kadmium. Styrstavarna körs normalt ut och in med elmotorer, men man kan även använda hydrauldon för snabbstopp.

En liten men viktig detalj som är mycket viktig för att kunna driva ett kärnkraftverk på ett säkert sätt är sk fördröjda neutroner. C:a 1% av de neutroner som produceras har föregåtts av ett beta-sönderfall. Det betyder att dessa neutroner är fördröjda med några sekunder (moderkärnans halveringstid) innan de kommer ut och kan inducera kärnklyvningar. Om inte denna 1% av fördröjda neutroner hade funnits, så hade tidskonstanten för reglering blivit mycket kortare, och det hade varit omöjligt att styra reaktorn med mekaniska anordningar.

En annan viktig aspekt på reaktorkonstruktionen är moderatorn som effektivt bromsar upp neutronerna. I de typer av reaktorer vi har i Sverige används vatten som moderator (förutom att det fungerar som kylmedium för reaktorhärden - det transporterar värme från reaktorn till turbinen). De neutroner som kommer ut i fissionsprocessen har ganska hög energi (1-10 MeV). Sannolikheten för fission av U-235 är emellertid mycket låg för dessa höga neutronenergier, se nedanstående figur. Vid låga neutronenergier är emellertid som synes sannolikheten mycket större. För att få ett bra utbyte av fissionsreaktioner är det alltså effektivt att snabbt få ner neutronenergin till låga värden. Detta sker genom att neutronerna kolliderar med vätekärnorna som finns i vattnet.

Se vidare länk 1, länk 2, Nuclear_power, Nuclear_reactor_technology och Light_water_reactor, de tre senare mycket omfattande och på engelska.

Question Image

Länkar: http://www.e.kth.se/~e98_bpo/index.html  |  http://sv.wikipedia.org/wiki/K%C3%A4rnreaktor
/Peter E 2005-12-01


Vad är skillnaden mellan fission och fusion?

Fråga:
Jag undrar hur jag enkelt förklarar skillnaden mellan fusion och fission för mina mellanstadieelever. Jag fick frågan av en elev som är väldigt intresserad av svaret men resten av klassen kommer sitta som fågelholkar när jag förklarar. Undrar därför om det finns en enkel, kort och koncis förklaring... Jag vill ju att de också ska förstå lite...
/Annica  W,  Centralskolan,  Ã…tvidaberg 2006-09-27
Svar:
Annica! Det är inte så lätt att förklara med mellanstadieelevernas begreppsbild. För full förståelse behöver man t.ex. förstå ett begrepp som bindningsenergi.

Det enklaste svaret är bara beskrivande: fusion är när man slår ihop lätta kärnor och fission är när man klyver tunga kärnor. Båda dessa processer ger energi (värme), så de kan användas t.ex. för att producera elektricitet.

Fissionsenergi är väl etablerat i praktiken i kärnkraftverk. Man klyver urankärnor genom att bombardera dem med neutroner. Eftersom det produceras 2-3 neutroner i varje fissionsprocess, går det att åstadkomma en kedjereaktion som kan underhållas kontinuerligt.

Fusionsenergi är däremot än så länge bara ett framtidshopp. Som en illustration till svårigheterna kan jag berätta att när jag började studera kärnfysik för drygt 30 år sedan så sade man att det kommer att ta 30 år att realisera en energiproducerande fusionsreaktor. I dag är uppskattningen: kanske om 50 år! Detta visar om inget annat hur svårt problemet är.

Anledningen till att kontrollerad fusion är så svår är att man försöker slå ihop två atomkärnor som är positivt laddade. Lika laddningar repellerar varandra, så för att kärnorna skall komma tillräckligt nära varandra så måste de skjutas mot varandra med hög hastighet. Hög hastighet hos atomerna i en gas betyder hög temperatur - flera miljoner grader. Man behöver kunna hålla ihop gasen och hindra den att expandera. Detta kan man göra med magnetfält, men det återstår ännu många problem att lösa. Nästa generation av försöksanläggning ITER, som är ett globalt samarbetsprojekt, håller på att byggas i Frankrike, se ITER.

Fusion sker i alla stjärnor, inklusive solen, så solenergi och vindenergi är i princip fusionsenergi från en naturlig fusionsreaktor i solens centrum.

Låt oss se om vi kan förstå varför man kan utvinna energi både genom att slå samman lätta kärnor och att klyva tunga kärnor.

Atomkärnan består av positivt laddade protoner (vätekärnor) och neutrala neutroner. Protoner och neutroner kallas med ett gemensamt namn för nukleoner. Antalet nukleoner kallas masstal och betecknas med A. Antal protoner i en kärna kallas atomnummer och betecknas med Z. Det är atomnumret som bestämmer vilket grundämne man har att göra med.

Protonerna repellerar visserligen varandra, men det finns attraherande krafter mellan nukleonerna som är starkare är repulsionen. Nukleonerna kommer därför att bindas samman och ha vad vi kallar en bindningsenergi.

Man kan förstå förvånansvärt mycket av atomkärnors egenskaper genom en mycket enkel modell: vätskedroppsmodellen. Man betraktar atomkärnan som en vätskedroppe - t.ex. en vattendroppe - så att nukleonerna motsvarar vattenmolekyler. Vattenmolekylerna i en vattendroppe binds samman genom krafter mellan närliggande molekyler, dvs den attraktiva kraften har kort räckvidd. Molekylerna i en vattendroppe har också en bindningsenergi - man måste tillföra energi för att "koka bort" molekyler. Se Semi-empirical_mass_formula för mer om vätskedroppsmodellen.

Bindningsenergin per nukleon visas i nedanstående figur. Grovt kan man säga att bindningsenergin för de flesta kärnor är c:a 8-9 MeV per nukleon. För lätta kärnor är bindningsenergin lägre, och den minskar även för mycket tunga kärnor. De mest stabila kärnorna - högst bindningsenergi - finns omkring masstalet 60, dvs järn och nickel.

Den lägre bindningsenergin för lätta kärnor förklaras av att små kärnor har relativt mycket "yta". Nukleonerna på ytan har inga grannar "utåt", så bindningen blir mindre. Det är denna effekt som orsakar ytspänning i en vattendroppe, se ytspänning.

Nedgången i bindningsenergi för tunga kärnor beror på repulsionen mellan protonerna. Coulomb-repulsionen har lång räckvidd till skillnad från attraktionskraften mellan nukleonerna som har kort räckvidd. Detta betyder att bindningen går som masstalet A och repulsionen som Z(Z-1)/2 där Z är kärnladdningen (antal protoner). För kärnor med många protoner kommer därför coulomb-repulsionen att bli större och därmed bindningsenergin att minska.

Låt oss titta lite på energiförhållandena för fission och fusion.

Om vi delar en urankärna med A c:a 240 hamnar vi omkring A=120. Bindningsenergin per nukleon är 7.5 vid A=240 och 8.4 vid A=120 (se figuren nedan). Vi vinner alltså en bindningsenergi på c:a (8.4-7.5)240=216 MeV. Detta är ett mycket högt värde för en kärnreaktion, och är anledningen till att det går att utvinna så mycket energi genom fission av tunga kärnor.

Kvalitativt kan man även förstå fissionsprocessen med vätskedroppsmodellen: en inkommande neutron sätter urankärnan i svängning. Om deformationen har tillräckligt stor amplitud, kommer coulomb-repulsionen att ta överhanden och kärnan kan delas i två delar.

Den mest effektiva fusionsreaktionen är att slå ihop deuterium med tritium:

d + 3H --> 4He + n


Bindningsenergierna (Nuclear_binding_energy) för de ingående kärnorna är enligt figuren nedan

2H: 21.1=2.2 MeV

3H: 32.8=8.4 MeV

4He: 47.0=28.0 Mev

n: 0 MeV

Differensen i bindningsenergi blir alltså 28.0-(2.2+8.4)=17.4 MeV. Som synes är anledningen till den stora frigjorda energin att 4He-kärnan (alfapartikeln) är mycket stabil. Detta är det enda man inte kan förstå med den enkla vätskedroppsmodellen - för att förstå detta behöver man kvantmekanik.

Vätskedroppsmodellen kan även förklara vilken kärna för ett giver masstal är stabilast, se Semi-empirical_mass_formulaExamples_for_consequences_of_the_formula. Även massparablerna (fråga [13758]) förklaras bra av massformeln.

Hoppas du kan använda en något av ovanstående utan alltför mycket fågelholksreaktion. Mer om ämnet finns under nedanstående länkar (på engelska): länk 1 är mer om bindningsenergi och länk 2 om kärnenergi.

Question Image

Länkar: http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin.html  |  http://science.howstuffworks.com/nuclear-power.htm
/Peter E 2006-09-27


Varför måste en avstängd reaktor kylas?

Fråga:
Hej!
Kärnkraften fungerar ju genom att värma vatten. Ändå blir uttjänt material för varmt. Varför kan man inte använda kärnmaterial tills dess att det inte ger någon värme längre? Det uttjänta material som nu verkar bli för varmt i Japan borde ju kunna användas en tid till, tills det inte "har mer att ge". Avfallet verkar tas ur drift för tidigt. Varför verkar avfallet tas ur bruk för tidigt??
/Thomas  Ã,  Knivsta 2011-03-20
Svar:
Thomas! Ja, det kan tyckas vara slöseri, men det är det inte av två skäl.

1 Om man snabbstoppar en reaktor genom att köra in styrstavarna helt stoppas kärnklyvningen omedelbart, men det utvecklas c:a 7% av maxeffekten i form av radioaktivt sönderfall hos, framför allt, fissionsprodukterna, se Decay_heatPower_reactors_in_shutdown. Detta är inte tillräckligt för att köra turbinerna på ett effektivt sätt.

2 Den verkliga förlusten blir mycket mindre än 7% dels för att reaktorer normalt inte snabbstoppas utan tas ner långsamt så att en del av sönderfallsenergin tas om hand - de flesta av restprodukterna har halveringstider under ett dygn. Framför allt så körs ju reaktorn åtskilliga månader mellan stoppen, och det är bara de långlivade och sist producerade restprodukterna som inte kommer till användning.

Man skulle kanske kunna använda restenergin för uppvärmning, men eftersom säkerheten är den viktigaste aspekten har man såvitt jag vet inte gjort försök med att utnyttja restvärmet - det skulle helt enkelt inte vara ekonomiskt lönsamt.

När det gäller att experimentera med kärnkraftverk är ju Tjernobyl ett avskräckande exempel. Experimentet som gick snett där hade visserligen bara indirekt att göra med restvärmet. Kylningen av en snabbstoppad reaktor kräver ju pumpar som kräver elektricitet. Om man inte kan få el utifrån, så måste man utnyttja dieselgeneratorer. Det tar emellertid c:a en minut att starta dessa. Man har alltså ett gap på en minut när man inte kan kyla härden. Idén var då att utnyttja rotationsenergin hos turbinerna för att producera reservkraft under en kort stund (reaktorn förutsättes snabbstoppad, så turbinerna snurrar för fullt). Det var när man mitt i natten försökte utföra detta experiment som allt gick förfärligt fel, se Chernobyl_disasterThe_attempted_experiment.

Problemen vi ser i Fukushima efter jordbävningen och tsunamin är just beroende på att resevgeneratorerna förstördes av tsunamin, det gick inte att få ström utifrån och intagen för kylvatten var fulla med bråte. Man kunde alltså inte kyla reaktorhärdana och ännu värre inte en bassäng med relativt nyuttaget kärnbränsle (SFP i nedanstående figur från Wikimedia Commons). Anledningen till att det uttagna kärnbränslet är det största problemet är att det inte är inneslutet lika bra som reaktorhärdarna. Se vidare 2011_Japanese_nuclear_accidents

Question Image

/Peter E 2011-03-20


Kan man skapa något ämne som ger mer energi än kärnkraft?

Grundskola_4-6: Energi - energikällor, kärnenergi [18782]
Fråga:
Kan man skapa något ämne som ger mer energi eller är kraftigare än kärnkraft?
/Anette  J,  Gamla Uppsala skola,  Uppsala 2012-10-03
Svar:
Bra fråga som faktiskt inte tycks vara besvarad här!

Energiproduktion är en process där man vinner energi genom att massan i sluttillståndet är mindre än massan i begynnelsetillståndet. Differensen i massa ger genom Einsteins formel E=mc2 en energi som kan uttnyttjas.

För mekaniska och kemiska energikällor är det inte meningsfullt eller brukligt att tala om en mass-skillnad eftersom den är omätbart liten, se fråga [17491]. För kärnreaktioner är mass-skillnaden emellertid fullt mätbar.

För traditionell kärnenergi (fission av uran) är mass-skillnaden ungefär 0.3%. För fusion (sammanslagning av lätta ämnen) är mass-skillnaden maximalt 0.7%.

För att få en energikälla gäller det alltså att hitta en process där sluttillståndet har mycket mindre massa (= energi) än begynnelsetillståndet.

Det finns bara en känd process som ger bättre energiutbyte än fusion: att låta en massa falla ner i ett svart hål. Då kan man teoretiskt utvinna 50% av vilomassan som energi, se fråga [14367]. Detta är knappast realistiskt i praktiken, så vi får nog vara nöjda med fission och fusion!

Den ultimata energikällan vore naturligtvis antimateria. Antimateria finns emellertid inte tillgängligt utan måste tillverkas, se fråga [16650].
/Peter E 2012-10-03


Är kärnkraft farligt?

Fråga:
Hej! Är kärnkraft farligt? Jag har precis sett en föreläsning från John Hopkins Applied Physics Laboratory med Bret Kugelmass.

Föreläsaren hävdar att historiskt sett så har aldrig en uran/vattenreaktor skapat mänskliga katastrofer. Det är bara plutonium/grafitmodererade reaktorer som gjort det (Tjernobyl). I princip menar han att Harrisburg och Fukoshima inte fick så allvarliga konsekvenser. Stämmer detta?

Han menar att det är den hårda lagstiftningen som gjort att det blir en katastrof.

Utöver detta menar han att kärnavfall inte är så farligt egentligen. Enligt honom är Iodine-131 den farliga komponenten i avfallet och det blir ofarligt efter 2 månader. Stämmer det?

Han hävdar också att om hela världen använder uran så har vi energi i miljoner av år. Stämmer det?
/Magnus  L,  2020-11-30
Svar:
Nej, generellt sett är användandet av kärnenergi inte farligt. Låt oss titta på de tre allvarligaste incidenterna du nämner:

Three Mile Island

Three Mile Island (TMI) är ett sedan september 2019 nedlagt kärnkraftverk, som ligger vid Susquehannafloden i Londonderry Township, Dauphin County, Pennsylvania i USA. Anläggningens första reaktor togs i drift 1974 och stängdes i september 2019. Reaktor nummer 2 som startades 1978 totalförstördes 1979 i en härdsmälta, i folkmun kallad Harrisburgolyckan. (Three_Mile_Island)


Reaktorn totalförstördes (härdsmälta) men reaktorinneslutningen höll och mycket lite radioaktivitet kom ut i omgivningen. I dag ser många denna olycka som en demonstration av att vår konstruktion av kärnkraftverk är mycket säker.

Se Three Mile Island

Tjernobyl

Tjernobylkatastrofen var en mycket allvarlig reaktorolycka i kärnkraftverket i Tjernobyl norr om Kiev i Ukraina (som då var en Sovjetrepublik). Olyckan inträffade natten till lördagen den 26 april 1986 klockan 01.23.45,[1] (lokal tid) när reaktor fyra i utkanten av staden Prypjat förstördes genom en explosion och ett moln med radioaktiva partiklar spreds med vindarna över stora delar av Europa. (Tjernobylkatastrofen)


Den värsta kärnkraftsolyckan vi haft. Man fick en vätgasexplosion, med det var att moderatorn var brännbar (grafit) och avsaknaden av en stadig reaktorinneslutning som gjorde att utsläppen av radioaktivitet blev så stora.

Se Tjernobyl

Fukushima

Fukushima-olyckan avser en serie haverier och utsläpp av radionuklider vid kärnkraftverket Fukushima I som följde jordbävningen vid Tohoku den 11 mars 2011.

Tre av verkets sex block var vid tillfället i drift och snabbstoppades, då jordbävningen slog ut det yttre elnätet. Den tsunami, som följde 56 minuter efter jordbävningen, slog ut de reservgeneratorer som användes för reaktorernas kylning. Endast batterikraft återstod då och ungefär 50 minuter senare upphörde nödkylsystemet att fungera i block 1 och 2 och efter ytterligare 1,5 dygn även i block 3. Därefter saknade såväl härdar som bränslebassänger kylning, vilket ledde till partiella härdsmältor med vätgasexplosioner och utsläpp av radioaktiva ämnen som följd.
(Fukushima-olyckan)



De tre havererade blocken var av typen lättvattenkylda kokarreaktorer med anrikat uran som bränsle (se Fukushima_Daiichi_nuclear_disasterPlant_description.


Se Fukushima


Fjärde generationens reaktor

Fjärde generationens reaktor (Gen IV) är en benämning för sex olika typer av kärnreaktordesign, som valts ut som särskilt lovande för framtida reaktorer. De är för närvarande föremål för intensiv forskning. Reaktorerna avses användas i kärnkraftverk för att som i dag främst ta tillvara elektrisk energi från kärnbränslen. (Fjärde generationens reaktor)


Nu till dina frågor.

Harrisburg var en fullständig härdsmälta men mycket lite radioaktivitet slapp ut, så olyckan hade liten påverkan på människor, undantaget en möjlig rädsla för utsläpp. Om man så vill kan man säga att haveriet visade att de vanliga vattenkylda reaktorerna är mycket säkra (undantaget ekonomiska konsekvenser).

Tjernobyl är en helt annan typ av reaktor som saknade inneslutning. Trots de allvarliga konsekvenserna (flera akut döda, sena cancerfall, ett stort område evakuerat) kan vi räkna bort denna (enligt Kugelmass definition) eftersom reaktortypen inte existerar utanför det gamla Sovjet-blocket.

Fukushima är en standardreaktor i västvärlden. Att inte klassa haveriets konsekvenser (Fukushima_Daiichi_nuclear_disasterAftermath) som allvarliga är både oärligt och korkat! Nej, ingen människa dog av akuta strålskador, men sena cancerfall och skador pga evakuering kan inte försummas.

Hur lagstiftningen skulle orsaka katastrofer begriper jag inte, det måste nog utvecklas.

Jod-131 har visserligen kort halveringstid (8 dagar), men även cesium-137 (med halveringstid 30 år) är skadligt.

Vanliga reaktorer använder 0.7% av uranet i bränslet (uran-235). Det finns reaktorer som använder allt uran och som även kan köras med t.ex. thorium. Genom att använda dessa extra isotoper som bränsle är tillgången på bränsle i praktiken obegränsad.

Bret Kugelmass är en professionell kärnenergi-lobbyist, men min åsikt är att uttalanden som ovan med hårdvinklade påståenden är snarast negativa för kärnenergins framtid. Om vi vill stoppa ökningen av CO2 (global uppvärmning, växthuseffekten) är sol och vind basresurser, men kärnenergi behövs som ett komplement. Men då måste man ta säkerhetsfrågorna mycket mer på allvar genom att designa "idiotsäkra" reaktorer, se Fjärde generationens reaktor ovan.

Länk 1 innehåller en intervju av Kugelmass. Länk 2 är en sammanfattning på svenska om fjärde generationens reaktorer.
Länkar: https://medium.com/@SustainabilityExplored/nuclear-an-old-new-solution-interview-with-bret-kugelmass-f1f09cc179b6  |  https://energiforsk.se/media/27042/broschyr-fjarde-generationens-karnkraft.pdf
/Peter E 2020-12-01


| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

** Frågelådan är stängd för nya frågor tills vidare **
Länkar till externa sidor kan inte garanteras bibehålla informationen som fanns vid tillfället när frågan besvarades.

Creative Commons License

Denna sida frÃ¥n NRCF är licensierad under Creative Commons: Erkännande-Ickekommersiell-Inga bearbetningar