Vill du ha ett snabbt svar - sök i databasen:

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

6 frågor / svar hittades

Fråga:
1.Vad är det som händer när ett kärnkraftverk exploderar?


2.Finns det inget annat ämne än uran, som är ofarlig, man kan använda?


3.Vad gör man med bi-produkten (Plutonium?).

/Alexander  K,  dammfriskolan,  malmö 1998-02-12

Svar:
1. Ett kärnkraftverk kan inte explodera som ett kärnvapen.
Däremot kan man få en härdsmälta. En sådan inträffar om kylningen inte
räcker till så att
själva härden blir överhettad och smälter. Den kan då skada
reaktorinneslutningen samtidigt som det kan ske ångexplosioner.
Detta kan ge upphov till att radioaktiva ämnen kan spridas utanför inneslutningen.
Det har inträffat två större olyckor med kärnkraftverk. I USA ("Three MileIsland") och i Tjernobyl. I USA så skedde en partiell härdsmälta, det vill
säga endel av härden smälte men allt radioaktivt material blev kvar inne i reaktortanken.I Tjernobyl överhettades en del av bränslet och det skedde en ångexplosionoch förmodligen också en vätgasexplosion. Dessa "vanliga" explosioner spred ut en stor mängd radioaktivt material.

I Three Mile Island stoppades nästan all radioaktivtet av reaktorinneslutningen, varför inga skador uppkom på omgivningen. I Tjernobyl saknades reaktorinneslutning, och stora mängder radioaktivitet kom ut i omgivningen och spreds med vindar över stora delar av Europa.

2. Det finns några andra ämnen som man kan använda som bränsle i ett kärnkraftverk. Det
är inte uranet som är farligt utan de nya ämnen som bildas inne i kärnreaktorn.


3. Man kan antingen upparbeta det och använda det igen i bränslet eller så tar man
det till slutförvaring.

Se vidare Chernobyl_disaster, Three_Mile_Island_accident och länk 1.

Länkar: http://news.bbc.co.uk/2/hi/science/nature/5173310.stm
/GO/lpe 1999-03-01


Berätta om transmutation av kärnavfall!

Fråga:
Jag läser om kärnkraft, och jag tycker att
transmutation av radioaktivt avfall verkar vara något bra. Vad är problemen? Varför kan man inte omvandla det instabila uranet till tex. bly och få ut energi?
Var kan jag läsa mer om forskning på transmutationer? /Nanna
/Nanna  T,  UmeÃ¥ 1998-05-01
Svar:
Detta är ett ganska tekniskt ämne, men vi skall försöka förklara det så enkelt som möjligt.



För att förstå bakgrunden till transmutation är det nyttigt att titta på de problem som finns med kärnenergin som vi utnyttjar den nu:


  • Den ger upphov till lÃ¥nglivat radioaktivt avfall som är
    besvärligt att bli av med på ett säkert sätt.


  • Kärnkraftreaktorer kan haverera och ge upphov till
    allvarliga skadeverkningar. Orsaken till detta är att man
    måste samla mycket (många ton) klyvbart uran i en liten volym för att
    kedjereaktionen skall kunna underhållas. Detta ger upphov till
    två problem:

    1. Reaktorn kan om man förlorar kontrollen bli "överkritisk"
      (varje generation neutroner från fissionsprocessen producerar
      fler neutroner som ger upphov till fission) och rusa iväg. I
      de flesta reaktorer som finns i dag så upphör denna "rusning"
      dock av sig själv, men reaktorn kan förstöras.
    2. Även om fissionsprocessen upphör (vilket den gör om en
      reaktor havererar), så måste man fortsätta att kyla bränslet
      under flera timmar. Om man inte gör det får man vad man kallar
      en härdsmälta. Har man otur så kan det radioaktiva materialet
      i härden komma ut i omgivningen. Olyckan i Three-Mile-Island
      var en härdsmälta, men den kraftiga inneslutningen, som finns
      i de flesta moderna reaktorer, höll, och ingen radioaktivitet
      kom ut i omgivningen.


Det grundläggande säkerhetsproblemet med våra nuvarande reaktorer är allså att de måste innehålla mycket uran. Om man försökte göra
en mindre reaktor, så skulle alltför många neutroner läcka ut ur
reaktorn, och vi kan inte vidmakthålla kedjereaktionen.



Idén med transmutation är att man tillför extra neutroner
utifrån. Dessa produceras genom att man låter en stråle
med protoner från en partikelaccelerator träffa ett
strålmål och producera neutroner genom s.k.
spallation (sönderdelning - man slår alltså i princip sönder atomkärnorna i sina beståndsdelar neutroner och protoner, se SpallationNuclear_spallation). Reaktorn placeras nära strålmålet, och de extra neutronerna medför att
vi kan underhålla en kedjereaktion med mindre mängd uran
i reaktorn - reaktorn är "underkritisk", vilket innebär
att så snart vi stänger av acceleratorn (det kan vi alltid
göra - det är bara att dra ur "sladden"), så har vi
ett snällt hanterbart system, som inte kan ge upphov till en härdsmälta.



En annan fördel är att vi kan "förbränna" (transmutera) allt
radioaktivt material, och vi kan på så sätt bli av
med avfallet.



En tredje fördel är att vi kan använda thorium som bränsle.
Det finns mycket mer thorium än uran (speciellt eftersom
vanliga reaktorer bara använder mindre är 1% av uranet -
isotopen U-235), varför vi har en i praktiken outtömlig
energikälla som dessutom är säker och inte ger upphov till
radioaktivt avfall.



Figuren nedan visar principen för ett system för transmutation som även producerar elektricitet.



Detta låter nästan för bra för att vara sant! Vi
löser alla problem med den nuvarande kärnkraften och får
en outtömlig energikälla! Det finns emellertid olösta
(med antagligen inte olösliga) problem:

  • Idén är ganska ny, och det krävs ett lÃ¥ngt
    och dyrt utvecklingsarbete för att realisera den.
  • Man mÃ¥ste kunna utföra en kemisk separation av
    olika grundämnen i bränslet: de stabila och kortlivade
    ämnena kan slutförvaras, medan långlivade radioaktiva ämnen måste föras tillbaka till transmutationsreaktorn.
  • Bara ett till synes enkelt problem som att göra
    ett strålmål som tål en mycket intensiv bestrålning
    med protoner är inget trivialt. Man arbetar nu
    med ganska komplicerade system med en blandning av
    bly/vismut i flytande form.
  • I Sverige har vi ytterligare ett problem:
    utveckling av ett transmutationssystem är olagligt
    enligt den beryktade "tankeförbudsparagrafen":
    Paragraf sex i lagen om kärnteknisk verksamhet lyder: Ingen får utarbeta konstruktionsritningar, beräkna kostnader, beställa utrustning eller vidta andra sådana förberedande åtgärder i syfte att inom landet uppföra en kärnreaktor.
    Gemenligen kallad "Lex Birgitta Dahl" - oåterkallerlig.
    Riksdagen måste ändra denna lag innan verkligt
    utvecklingsarbete kan komma igång i Sverige. (Tillägg: Lagen är numera avskaffad)

Numera bedrivs forskning om transmutation i ganska stora projekt i flera länder. Än så
länge får man nog betrakta dessa som "förstudier".


Ämnet är relativt nytt och det mesta som finns skrivet
är på engelska och ganska tekniskt. Länken, som
uppdateras kontinuerligt, ger en lista på de websites
vi hittat.

Länkar: http://www.pixe.lth.se/links/search.asp?class2=%267%3B&sForm=true
/Peter Ekström 2002-10-10


Varför är klyvingsprodukterna i ett kärnkraftverk radioaktiva.

Fråga:
För att värma upp stavarna i ett kärnkraftverk så klyver man atomerna...när man klyver dom så blir dom radioaktiva...varför klyver man inte dom så mycket tills dom inte är radioaktiva?
/Joni  L,  Forssaklackskolan,  Borlänge 2005-01-19
Svar:
Det enkla svaret är att det kan man inte påverka. Kärnorna klyvs enligt de regler naturen bestämt.

Titta på nuklidkartan nedan. Stabila kärnor är markerade med mörkrött, och kända kärnor av det grå området. Kärnan som klyvs i ett kärnkraftverk är 235U. Denna är markerad med en svart punkt uppe till höger i diagrammet. 235U har ett större överskott av neutroner än vad stabila lättare kärnor har.

Eftersom klyvningsprocessen inte kan "sortera" neutroner och protoner, måste alla klyvningsprodukter hamna på linjen mellan 235U (egentligen 236U eftersom det är infångandet av en neutron som orsakar klyvningen) och origo.

Alla kärnor på linjen ligger emellertid nedanför de stabila kärnorna. Kärnor på linjen har ett överskott av neutroner. Detta korrigeras först genom att 2-3 neutroner sänds ut i klyvningsprocessen (dessa kan sedan underhålla kedjereaktionen) och senare genom b--sönderfall. En del av dessa b--instabila kärnor har lång halveringstid (många år) och utgör en del av det avfall man får från ett kärnkraftverk. Det bildas även ett antal tunga kärnor (s.k. transuraner och aktinider), och de utgör den mycket långlivade delen (hundratusentals år) av avfallet.

Se vidare frågorna om kärnkraftsavfall.

Question Image

/Peter E 2005-01-19


Vad gör man med det radioaktiva avfallet från kärnkraftverken?

Grundskola_7-9: Energi - kärnkraftsavfall [14569]
Fråga:
Jag undrar vad man gör med det radioaktiva avfallet från kärnkraftverken?
I vad lagras strålningen för att den inte ska komma ut i naturen?
/Magda  K,  Alfaskolan,  Solna 2006-03-10
Svar:
Hej Magda! Vi har svarat en hel del på frågor om vad avfallet består av, se kärnkraftsavfall, men inte mycket vad vi planerar gör med det. Så är beskrivs processen av Svensk Kärnbränslehantering AB (SKB):

Idag mellanlagras allt använt kärnbränsle i Clab där vatten kyler bränslet och skärmar av strålningen. Eftersom använt kärnbränsle har en förhöjd aktivitet under väldigt lång tid, storleksordningen 100 000 år, måste förvaringen förändras i framtiden.

Därför planerar SKB att bygga ett slutförvar för allt använt kärnbränsle, ett förvar som inte kräver någon övervakning och kontroll av kommande generationer.

Den metod som SKB arbetar efter kallas KBS-3. Den innebär att det använda kärnbränslet ska kapslas in i koppar. Kopparkapslarna ska sedan deponeras i urberget på cirka 500 meters djup, inbäddade i lera (se illustrationen nedan). När deponeringen är klar försluts tunnlar och bergrum.


Man har alltså tre barriärer för att hindra att radioaktivitet kommer ut: kopparkapsel, lera och urberget.

Den mest sannolika placeringen tycks i dag vara i Oskarshamns-trakten (där mellanlagringen Clab finns i dag), men detaljerna i förvaret kan fortfarande ändras - det är inte byggstart förrän 2010 och förvaret beräknas komma i drift 2017.

För mer information om avfall och slutförvaring se Svensk Kärnbränslehantering ABs webbsajt och den mycket informativa sajten för ungdomar under länk 1 med bland annat några bra kortfilmer.

Question Image

Länkar: http://www.skb.se/templates/SKBUStartPage____9456.aspx
/Peter E 2006-03-10


Varför måste en avstängd reaktor kylas?

Fråga:
Hej!
Kärnkraften fungerar ju genom att värma vatten. Ändå blir uttjänt material för varmt. Varför kan man inte använda kärnmaterial tills dess att det inte ger någon värme längre? Det uttjänta material som nu verkar bli för varmt i Japan borde ju kunna användas en tid till, tills det inte "har mer att ge". Avfallet verkar tas ur drift för tidigt. Varför verkar avfallet tas ur bruk för tidigt??
/Thomas  Ã,  Knivsta 2011-03-20
Svar:
Thomas! Ja, det kan tyckas vara slöseri, men det är det inte av två skäl.

1 Om man snabbstoppar en reaktor genom att köra in styrstavarna helt stoppas kärnklyvningen omedelbart, men det utvecklas c:a 7% av maxeffekten i form av radioaktivt sönderfall hos, framför allt, fissionsprodukterna, se Decay_heatPower_reactors_in_shutdown. Detta är inte tillräckligt för att köra turbinerna på ett effektivt sätt.

2 Den verkliga förlusten blir mycket mindre än 7% dels för att reaktorer normalt inte snabbstoppas utan tas ner långsamt så att en del av sönderfallsenergin tas om hand - de flesta av restprodukterna har halveringstider under ett dygn. Framför allt så körs ju reaktorn åtskilliga månader mellan stoppen, och det är bara de långlivade och sist producerade restprodukterna som inte kommer till användning.

Man skulle kanske kunna använda restenergin för uppvärmning, men eftersom säkerheten är den viktigaste aspekten har man såvitt jag vet inte gjort försök med att utnyttja restvärmet - det skulle helt enkelt inte vara ekonomiskt lönsamt.

När det gäller att experimentera med kärnkraftverk är ju Tjernobyl ett avskräckande exempel. Experimentet som gick snett där hade visserligen bara indirekt att göra med restvärmet. Kylningen av en snabbstoppad reaktor kräver ju pumpar som kräver elektricitet. Om man inte kan få el utifrån, så måste man utnyttja dieselgeneratorer. Det tar emellertid c:a en minut att starta dessa. Man har alltså ett gap på en minut när man inte kan kyla härden. Idén var då att utnyttja rotationsenergin hos turbinerna för att producera reservkraft under en kort stund (reaktorn förutsättes snabbstoppad, så turbinerna snurrar för fullt). Det var när man mitt i natten försökte utföra detta experiment som allt gick förfärligt fel, se Chernobyl_disasterThe_attempted_experiment.

Problemen vi ser i Fukushima efter jordbävningen och tsunamin är just beroende på att resevgeneratorerna förstördes av tsunamin, det gick inte att få ström utifrån och intagen för kylvatten var fulla med bråte. Man kunde alltså inte kyla reaktorhärdana och ännu värre inte en bassäng med relativt nyuttaget kärnbränsle (SFP i nedanstående figur från Wikimedia Commons). Anledningen till att det uttagna kärnbränslet är det största problemet är att det inte är inneslutet lika bra som reaktorhärdarna. Se vidare 2011_Japanese_nuclear_accidents

Question Image

/Peter E 2011-03-20


Kärnkraftsavfall

Fråga:
Det som blir kvar när bränslet i ett kärnkraftverk förbrukats är bland annat det radioaktiva ämnet plutonium, som har en halveringstid på 24 000 år
Vad är det som är halverat efter 24 000 år?
Varför är det viktigt att veta om kärnavfalls halveringstid?
/Johannes  M,  Stockholm,  Engelbrektskolan 2015-11-16
Svar:
239Pu med halveringstiden 24000 år (länk 1) bildas i reaktorn genom neutroninfångning i 238U. Det är aktiviteten (sönderfall/sekund) av 239Pu som halveras. Avfallet innehåller emellertid även andra långlivade nuklider.

Figuren nedan från fråga [17804] visar den totala aktiviteten från kärnavfall (röd kurva) och den uppskattade aktiviteten hos uranet om det varit kvar i marken. Man kan se att efter 100000 år är aktiviteten hos kärnavfallet lika med det obrutna uranet. Detta är alltså en mycket konservativ gräns för hur länge man måste skydda sig från kärnavfallet.

Mer realistiskt kan man läsa av från kurvan att aktiviteten sjunker från 31019 till 31015 dvs en faktor 10000 på 1000 år. Slutsatsen är alltså att en mycket stor del av den totala aktiviteten kommer från mer korttlivade nuklider, mestadels fissionsprodukter.

Question Image

Länkar: http://nucleardata.nuclear.lu.se/toi/listnuc.asp?sql=&Z=94
/Peter E 2015-11-16


| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

** Frågelådan är stängd för nya frågor tills vidare **
Länkar till externa sidor kan inte garanteras bibehålla informationen som fanns vid tillfället när frågan besvarades.

Creative Commons License

Denna sida frÃ¥n NRCF är licensierad under Creative Commons: Erkännande-Ickekommersiell-Inga bearbetningar