Visa fråga/svar

 

Kraft-Rörelse [14738]

Fråga:
Rörelseenergi för en rullande kula
/Veckans fråga

Ursprunglig fråga:
Hejsan! Jag har ett problem. En kula släpps i en kulbana som står placerad på ett bord, vid kanten. Jag har räknat fram att kulan har fått en viss teoretisk energi när den lämnar banan och den har fått en minde energi i verkligheten.

Jag kan anse att luftmotståndet och friktionen inte har någon påverkan och jag har listat ut att det har något med rotationen av kulan att göra, så min fråga är nu. Vart tar energin vägen på sin resa ned för kulbanan?

svara gärna snabbt, arbetet ska lämnas in denna veckan..
/Anna O, Birger Sjöbergymnasiet, Vänersborg

Svar:
Ditt problem är inte helt lätt, du får nöja dig med en skiss. Lösningen finns under länk 1, men där på engelska.

Vi börjar med att bortse från kulans rotation. Antag kulans massa är m och dess sluthastighet v. Då gäller enligt energiprincipen (potentiell energi på höjden h = kinetisk energi vid botten):

mgh = mv2/2

dvs

v2 = 2gh

Om kulan inte glider alls kommer den att sättas i rotation. Om tyngdpunktens hastighet i detta fallet är u, kommer vinkelhastigheten w att vara u/r där r är kulans radie. (Du får detta resultat eftersom den del av kulan som rör vid kulbanan har hastigheten 0 i förhållande till banan - kom ihåg, inget glid!).

En homogen kulas tröghetsmoment ges av J = 2mr2/5 (Tröghetsmoment#Exempel ) och rotationsenergin är Jw2/2.

Vi adderar translations-kinetiska energin och rotationsenergin och får

mgh = mu2/2 + (2mr2/5)(u/r)2/2 = mu2(1/2) + mu2(1/5)

dvs

u2 = (10/7)gh = 1.43gh

Detta är klart mindre än 2gh som vi fick ovan eftersom ju en del energi går till kulans rotationsenergi. Förhållandet u/v blir ungefär 0.85, alltså 15% lägre hastighet än en kula som glider perfekt och inte roterar.

Förhållandet mellan rotationsenergi och translationsenergi blir enligt ovan

(1/5)/(1/2) = 2:5.

Tillägg om puttning i golf

Golfspelare som puttar bra ser till att slå till bollen med en något uppåtgående rörelse för att bollen om möjligt skall börja rulla omedelbart. Om man slår till bollen helt centralt kommer bollen att glida ett tag på gräset. Friktionen kommer efter ett tag att få bollen att rulla, men rotationsenergin måste tas från rörelseenergin. Bollen bromsas alltså upp för att den skall kunna få rotation. Det visar sig att längden på puttarna blir mycket mer konsistent om man kan få bollen att rulla direkt vid tillslaget.

Tekniken att få överspinn på bollen direkt vid tillslaget används även t.ex. i biljard då man oftast slår till bollen ovanför ekvatorsplanet vilket får bollen att börja rulla omedelbart.

/*fa*
/Peter E

Nyckelord: tröghetsmoment [8]; lutande plan [14]; *idrottsfysik [41]; rörelseenergi [12]; golfboll [13];

1 http://modeling.asu.edu/listserv/U7_KE_rolling_ball02.pdf

*

 

 

Frågelådan innehåller 7345 frågor med svar.
Senaste ändringen i databasen gjordes 2018-12-10 11:04:20.


sök | söktips | Veckans fråga | alla 'Veckans fråga' | ämnen | dokumentation | ställ en fråga
till diskussionsfora

 

Creative Commons License

Denna sida från NRCF är licensierad under Creative Commons:
Erkännande-Ickekommersiell-Inga bearbetningar
.