Vill du ha ett snabbt svar - sök i databasen:

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

17 frågor / svar hittades

Om värmeinnehåll

Grundskola_7-9: Värme - antimateria, termodynamik [16650]
Fråga:
Hej,
jag håller på med ett skolarbete som har temat "värmeenergi", och har två frågor om det inte är för mycket begärt:

1. Vilken värmekapacitivitet/Cp har is?

2. Fungerar detta?:

En liter flytande vattens värmeenergi, 0 grader celsius:

Värmeenergi i J=1kg273&916;Tis värmekapacitivitet

Jag räknade inte med energin som krävs för att isen ska smälta, eftersom den inte bidrar till värmeenergin(?).

Om denna "formel" inte fungerar, hur räknar man då ut ett föremåls värmeenergi?
/Axel  K,  MariaMontessoriskolan,  Lund 2009-11-21
Svar:
Axel!

1 Den specifika värmekapaciteten för is är 2.1 kJ/kg.K. Det frigörs alltså 2.1 kJ när man sänker temperaturen en grad hos 1 kg is.

2 Nej, det är inte meningsfullt. Även om det i princip enligt termodynamikens första huvudsats (energins bevarande) finns energi att hämta ur is om man kyler ner det till absoluta nollpunkten så saknar det mening pga termodynamikens andra huvudsats: värme går från en varmare kropp till en kallare. När det gäller möjligheten att ge energi är alltså temperaturen viktig: ju högre temperatur desto högre energipotential.

En kropps värmeenenergi är alltså inget som är direkt givet, utan det beror på processen med vilken man extraherar energin. Att få energi genom att kyla is låter inte särskilt lovande. Tänk t.ex. på att det faktiskt kostar energi att frysa köttbullarna som blev över trots att du tar ut värmeenergi från dem. (Värmeenergin går till uppvärmning av huset.)

Låt oss ta ett exempel. Det extrema energiinnehållet är om man har en bit materia med massan 1 kg. Om man har tillgång till 1 kg antimateria (som i Dan Browns bok Änglar och demoner) skulle man kunna frigöra

2mc2 = 2c2 = 2(3108)2 = 18 1016 J

Detta motsvarar den energi som ett kärnkraftverk med effekten 1000 MW utvecklar under 6 år. Enda problemet är att det kostar mångdubbelt denna energi att producera ett kg antimateria :-(.

Se vidare Thermodynamics och Termodynamik.
/Peter E 2009-11-22


Antimateria på CERN

Gymnasium: Partiklar - antimateria, kvark, standardmodellen [17502]
Fråga:
Hej! I CERN har det producerats antimateria, enligt tidningsrapporter. Har antimateriepartiklarna samma kvanttal som vanlig materia? Följer antimaterian Paulipricipen? Hur skiljer/påvisar man en neutron från en antineutron, de är ju båda oladdade?
/Thomas  Ã,  Knivsta 2010-11-18
Svar:
Thomas! Det nya är att man lyckats "klä på" antiprotoner med positroner och alltså lyckats framställa ett litet antal (38) anti-väteatomer. Det innebär att man kan studera övergångar i anti-väte och jämföra dem med väte. Standardmodellen säger att egenskaperna skall vara exakt desamma med undantag för laddningen. Antipartiklar följer Pauliprincipen mot andra identiska antipartiklar, mot motsvarande partiklar saknar Pauliprincipen mening.

Man alltså lyckats framställa en liten mängd oladdad antimateria. Än så länge inte tillräckligt för att scenariot i Dan Browns bok (och filmen) Änglar och demoner skall bli verklighet!

Neutronen har t.ex. ett magnetiskt moment. Anti-neutronen har det motsatta eftersom kvarkarna har annan laddning. Neutronen har kvarksammansättningen ddu (laddning -1/3,-1/3,+2/3). Antineutronen har sammansättningen dantidantiuanti (laddning +1/3,+1/3,-2/3).

Se vidare "over the top" artikeln länk 1 och den mer sansade pressreleasen länk 2.
Länkar: http://www.theregister.co.uk/2010/11/18/cern_antimatter_bomb/  |  http://press.web.cern.ch/press/PressReleases/Releases2010/PR22.10E.html
/Peter E 2010-11-18


Vad består universum av?

Fråga:
Hej!
Ibland ses i medier uppgifter om antal partiklar per m^3 eller antal partiklar per cm^3 i rymden, dvs långt utanför jordatmosfären. Antalet varierar rätt mycket och jag undrar om det finns något tillförlitligt värde och vilket detta är. Finns även något beräknat/uppmätt värde på antal neutriner per m^3? Även fotoner borde kunna räknas på analogt sätt. Finns mätvärde?
/Thomas  Ã,  Knivsta 2013-11-22
Svar:
Densiteten av materia i universum varierar mycket från superhöga densiteter i svarta hål och neutronstjärnor till mycket låga värden utanför galaxhopar. Jag antar emellertid att du frågar om medeldensiteten.

Den klassiska kosmologin med bara normal (baryonisk) materia gav en densitet på 6 väteatomer/m3 om universum var plant (kritisk densitet). Eftersom endast 4.6% av den totala energin (massan) är baryoner (se fråga [18686]), så sjunker baryondensiteten till c:a 1/4 väteatom/m3. Från förekomsten av lätta nuklider efter Big Bang kan man dra slutsatsen att en försumbar del av den mörka materien är baryoner. Denna måste alltså bestå av något okänt, t.ex. WIMPs ("tunga neutriner").

Nära tiden för Big Bang dominerade strålning över materia (till höger i nedanstående figur där 1/R [skalfaktorn R] är stort). Allteftersom universum expanderar (R blir större) avtar materietätheten som 1/R3. Strålningstätheten avtar emellertid som 1/R4 eftersom man även måste ta hänsyn till att strålningens energi avtar på grund av att våglängden ökar som R. Vid en punkt är alltså densiteten av strålningsenergi och materia lika. Nu (13.75 miljarder år efter Big Bang) är strålningsenergin nästan försumbar.

Antalet fotoner är 3.7108/m3 .
Detta låter som mycket, men man skall komma ihåg att energin för temperaturstrålning vid 2.7 K är mycket liten (3kT=1.110-22 J).

I länk 1 diskuteras den kosmiska densitetsparametern W och hur denna är summan av materian (baryonisk och mörk), relativistiska partiklar (neutriner och fotoner) samt mörk energi.

Vad gäller densiteten av kosmiska neutriner så har man ännu inte detekterat dessa, men teoretiska beräkningar uppskattar att det finns 3.3108/m3 . Detta är som synes nästan exakt samma som ovanstående fotondensitet.

Se även länk 2 och Cosmic_neutrino_background.
____________________________________________________________

http://www.maths.qmul.ac.uk/~jel/ASTM108lecture8.pdf.

http://lappweb.in2p3.fr/neutrinos/anunivers.html

Question Image

Länkar: http://hyperphysics.phy-astr.gsu.edu/hbase/astro/denpar.html  |  http://map.gsfc.nasa.gov/universe/uni_matter.html
/Peter E 2013-11-22


Vad händer när en proton och en antiproton annihileras?

Gymnasium: Partiklar - annihilation, antimateria, kvark [19254]
Fråga:
1. En elektron och dess antipartikel, positron, förintas om de träffar på varandra. Det lär gälla även en proton och dess antipartikel, antiprotonen. Men hur kan då kvarkar och antikvarkar hålla sams? Mesoner sönderfaller men de annihilerar inte.

2.Skulle en "deuteriumkärna" kunna bestå av en proton och en antineutron? De är ju inte varandras antipartiklar.
/Thomas  Ã,  Knivsta 2013-12-11
Svar:
Hej Thomas!

1 Protonen och antiprotonen är ju sammansatta av kvarkar resp. antikvarkar. Till skillnad från elektron/positron så annihileras inte hela partikeln utan bara ett kvark-antikvark par, se figuren nedan från länk 2. Se även fråga [15922].

Från AnnihilationProton-antiproton_annihilation:

When a proton encounters its antiparticle (and more generally, if any species of baryon encounters any species of antibaryon), the reaction is not as simple as electron-positron annihilation. Unlike an electron, a proton is a composite particle consisting of three "valence quarks" and an indeterminate number of "sea quarks" bound by gluons. Thus, when a proton encounters an antiproton, one of its constituent valence quarks may annihilate with an antiquark, while the remaining quarks and antiquarks will undergo rearrangement into a number of mesons (mostly pions and kaons), which will fly away from the annihilation point. The newly created mesons are unstable, and will decay in a series of reactions that ultimately produce nothing but gamma rays, electrons, positrons, and neutrinos. This type of reaction will occur between any baryon (particle consisting of three quarks) and any antibaryon (consisting of three antiquarks). Antiprotons can and do annihilate with neutrons, and likewise antineutrons can annihilate with protons.


2 Som synes ovan är svaret nej. En proton och en antineutron annihileras på samma sätt som proton/antiproton.

Question Image

/Peter E 2013-12-11


Hur fungerar en antimateriefälla?

Gymnasium: Partiklar - accelerator, antimateria [19575]
Fråga:
Jag har läst lite om att Cern utvecklar så kallade anti-materialås. På ett ungefär, hur fungerar dom och hur långt har man kommit?

Varför ökar inte massan i partiklarna,som accelereras upp i Cern,mot det oändliga när partiklarna närmar sej ljusets hastighet? Enligt relativitets teorin borde det väl vara så?
/Jörgen  B,  Kista 2014-12-18
Svar:
Jag antar du menar antimateriefälla ("antimatter trap"). Det finns flera sådana, se länk 1, men ALPHA-projektet är det senaste och mest avancerade. Anläggningen är ganska komplex, men i princip håller man fast antiväte med elektriska och magnetiska fält. Man kan nu hålla fast antiväteatomer i princip hur länge som helst.

Avsikten är att studera om det finns några skillnader i växelverkan mellan materia och antimateria. Än så länge har man inte funnit någon skillnad, se t.ex. länk 2. Videon nedan beskriver uppställningen.




Partiklarna ökar visst sin massa när de accelereras. Det är anledningen till att man måste använda en synkrocyklotron i stället för en traditionell cyklotron med konstant accelerationsfrekvens, se Synchrocyclotron och Cyclotron. När partiklarna når riktigt höga energier ökas hastigheten mycket lite. I stället blir den ökande rörelseenergin till ökad relativistisk massa hos partikeln.
Länkar: http://home.web.cern.ch/topics/antimatter  |  http://home.web.cern.ch/about/updates/2014/06/cerns-alpha-experiment-measures-charge-antihydrogen
/Peter E 2014-12-18


Annihilation

Lärarutbildning: Partiklar - annihilation, mörk materia, QED [19966]
Fråga:
Om materia och antimateria träffar varandra bildas bara fotoner. Innebär detta att den minsta beståndsdelen i universum (all materia) är fotoner ? Då blir diskussionen om andra minsta beståndsdelar onödig eller ? Tex om det är kvarkar, strängar mm ? Allt består i grunden av fotoner ?
/Göran  A,  Kungsbacka 2015-11-12
Svar:
Annihilation uppstår när en partikel möter en antipartikel, och materia transformeras till energi i någon form.

Annihilation avser processer där en subatomär partikel kolliderar med sin antipartikel och förintas. Den totala energin som frigörs då (den massekvivalenta energin plus partiklarnas rörelseenergi) omvandlas direkt till elektromagnetisk strålning (QED) och i vissa fall till nya subatomära partiklar (QCD). Partikeln och dess antipartikel har exakt motsatta kvanttal och deras summa försvinner, så att också den resulterande skurens nya partiklar har i sin helhet kvanttal som är lika med noll.

Sluttillståndet kan alltså förutom fotoner även innehålla t.ex. kraftförmedlingspartiklarna gluoner eller W/Z.

Nej, mörk materia kan inte vara fotoner eftersom dessa växelverkar med materia genom partiklarnas laddning. Själva definitionen av mörk materia är ju att den inte växelverkar med materia på annat sätt än genom gravitationen.

Se även fråga [12396] [19254] och mörk materia.
/Peter E 2015-11-12


Mörk materia

Fråga:
Hej! Min fråga angår mörk materia.

Om jag förstått det rätt så kan man visualisera "rummet" som kuber och att materia böjer kuberna mot sitt centrum och ger upphov till gravitation. Skulle det vara möjligt att någon händelse eller liknande gjorde att kuberna blev konstant böjda och det är då det som vi ser som mörkmateria?
/Fredrik  A,  Ingen,  KÃ¥llered 2016-11-20
Svar:
Det är korrekt att massa kröker rymden - det är ett grundläggande resultat av den allmänna relativitetsteorin. Det finns teoretiker som har spekulerat att mörk materia inte finns utan bara är en spontan krökning hos rymden, se t.ex. Dark_matterAlternative_theories. Problemet är att man måste ge sig på att modifiera Einsteins ekvationer, och det för med sig nya problem.

I måndags (21/11 2016) sändes ett inslag i Vetenskapens värld om mörk materia, se länk 1. Där förutsägs att man rett ut problemet med den mörka materien inom fem år. Vi kan alltid hoppas.

Se fråga [13626] och [9324] för mer om relativitetsteorin och fråga [20164] och [12396] för mörk materia.
Bilden nedan är från länk 2 med bildtexten:

In this image, dark matter (blue) has become separated from luminous matter (red) in the bullet cluster. Image courtesy of Chandra X-ray Observatory.

Question Image

Länkar: http://www.svt.se/nyheter/vetenskap/forskare-vi-ar-nara-att-hitta-mork-materia  |  http://home.slac.stanford.edu/pressreleases/2006/20060821.htm
/Peter E 2016-11-21


Sida 2 av 2

Föregående |

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

** Frågelådan är stängd för nya frågor tills vidare **
Länkar till externa sidor kan inte garanteras bibehålla informationen som fanns vid tillfället när frågan besvarades.

Creative Commons License

Denna sida frÃ¥n NRCF är licensierad under Creative Commons: Erkännande-Ickekommersiell-Inga bearbetningar