Vill du ha ett snabbt svar - sök i databasen:

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

14 frågor / svar hittades

Hur beräknar man universums ålder?

Fråga:
Hej!
Jag håller på med ett specialarbete om universums ålder,
och jag undrar hur de fullständiga beräkningarna för detta ser ut?
/Gustaf  J,  Gislaveds gymnasium,  Gislaved 2000-11-21
Svar:
Universums ålder är enligt ett naturvetenskapligt sätt att se, den tid som förflutit sedan big bang. De senaste mätningarna med Planckteleskopet, från 2013, ger vid handen att universum är 13,798±0,037 miljarder år gammalt, enligt standardmodellen för kosmologin, Lambda-CDM-modellen. (Universums_ålder)

Det finns i huvudsak två metoder att bestämma universums ålder: kosmologiska och astrofysikaliska.
För en del år sen var det en besvärlig situation. De
äldsta stjärnorna tycktes vara 15 miljarder år, medan de kosmologiska
beräkningarna gav universums ålder till 10 miljarder år. Idag är
diskrepansen i stort sett borta (ungefär 14 miljarder år).

De kosmologiska beräkningarna baseras på universums expansionstakt,
som ges av hubblekonstanten (H).
Wendy Freedman, en av de främsta specialisterna på området,
har skrivit en artikel i Scientific American om saken (mars 1998). I princip är
universums ålder proportionell mot 1/H. Fullt så enkelt är det inte. Man måste också veta om H ändras med tiden, och det är modellberoende.
Nu pekar två oberoende metoder (baserade på supernovor och den kosmiska
mikrovågsstrålnigen) på att expansionen ökar med tiden, och det ger
ett högre värde på universums ålder.

Det är inte möjligt här att presentera de fullständiga beräkningarna.
Det har skrivits hundratals hyllmeter om saken, men sajterna Chandra will target the age of the Universe och Age of the Universe ger mera information.

Hubbles lag

Edwin Hubble upptäckte i slutet på 1920-talet att galaxerna uppvisade rödförskjutning - ju längre bort galaxen var desto större var rödförskjutningen. Hubble tolkade rödförskjutningen som en rörelse bort från oss (med hastigheten v, se länk 1) och fann en proportionalitet

v = Hd

där d är galaxens avstånd, se nedanstående figur, och H är en konstant, hubblekonstanten. Den rimliga tolkningen av denna observation var att universum expanderar och att universum från början var mycket litet. Detta var början av vad som i dag är den kosmologiska standardmodellen, big bang teorin. Den förste som föreslog att universum börjande som en "uratom" var Georges Lemaître.

Bilden är från Indiana University, länk 2. Se vidare Edwin_Hubble, Hubble's_law, Big_bang och Georges_Lemaitre.

Ett par kommentarer om Hubbles lag

Man kan förstå ett par viktiga aspekter på universums expansion med ett enkelt experiment.

Tag en vanlig, rund ballong och måla små prickar på den med en märkpenna. Prickarna skall representera galaxer. Blås upp ballongen lite grann. Mät avståndet mellan två närliggande prickar och två lite längre från varandra. Rita in förbindelselinjerna mellan de uppmätta prickarna. Låt oss säga det mindre avståndet är 1 cm och det större 3 cm. Blås nu upp ballongen så det mindre avståndet är 2 cm. Vad är då det större avståndet? Det bör vara c:a 6 cm. Om expansionen tog t sekunder så är hastighetena 1/t och 3/t. Vi har alltså att expansionshastigheten är proportionell mot det urspungliga avståndet, vilket är Hubbles lag.

Föreställ dig att du sitter på en prick (galax) på ytan av ballongen. Alla andra prickar rör sig bort från dig med en hastighet som alltså ökar med avståndet. Kan du därav dra slutsatsen att du sitter i centrum? Nej, det kan du inte eftersom du gör precis samma observation från alla prickar på ballongytan. Ytan på en ballong har ju inget centrum! Det är samma sak med universums expansion - vår observation betyder inte att vi befinner oss i universums centrum, något som dessutom är ett omöjligt begrepp för ett oändligt universum.

Förenklad beräkning av universums ålder från H

Om vi antar att hubblekonstanten
är H=72 km/s/Mparsek kan vi få en uppskattning
av universums ålder som tiden = sträckan/hastigheten = d/v = 1/H. (Lägg märke till att dimensionen av 1/H är tid eftersom det finns längd både i nämnare och
täljare.) Vi måste först emellertid konvertera Mparsek till km:

1 ljusår = 3105[c i km/s]365.24246060 = 9.471012 km

1 parsek = 3.26 ljusår

1 Mparsek = 3.261069.471012 km = 30.81018 km

Universums ålder 1/H blir då

(30.81018 km)/(72 km/s) = 0.4281018 s = 0.4281018/(606024365.24) år = 14109 år

I verkligheten är expansionshastigheten inte konstant så man använder sig av lite mer sofistikerade kosmologiska modeller, se fråga [11987] och [18686].

Question Image

Länkar: http://hyperphysics.phy-astr.gsu.edu/hbase/relativ/reldop2.html#c1  |  http://www.indiana.edu/~geol105/images/gaia_chapter_1/edwin_hubble.htm
/KS/lpe 2003-05-05


Finns det någon chans att det kommer bli
"the big crunch"?

Fråga:
Hej, jag gör ett arbete om universums uppkomst
(dvs big bang), och undrar om det finns flera
olika teorier om hur det hela gick till, och om det
så skulle vara, kan ni vara så snälla och skicka lite info?
Finns det någon chans att det kommer bli
"the big crunch"?
/Marika  A,  Kvarnbergsskolan,  Huddinge 2001-01-24
Svar:
Det finns data som tyder på att universums expansion accelererar. Därför är det inte många som räknar med någon "big chrunch" längre. Orsaken till accelerationen är troligen att universum nu inte domineras av materia,
utan av en egenskap hos vakuum som kallas mörk energi, som enligt Wikipedia är: en hypotetisk form av energi som genomtränger hela rymden och synes öka universums expansionstakt. Mörk energi är numera det gängse sättet att förklara, vad som enligt observationer och experiment tolkats som en accelererande expansion hos universum, det vill säga att rumtiden förefaller att expandera allt fortare och fortare.

Några av de data som ligger bakom införandet av den mörka energin visas i bilden längst ner i svaret. Man kan se att avvikelsen (punkterna för höga värden på rödförskjutningen Z ligger över den heldragna linjen) är ganska måttlig och dessa data är egentligen inte helt övertygande. Det finns nu emellertid ganska övertygande ytterligare stöd för en accelererande expansion, tillräckligt för den normalt konservativa nobelkommittén att ge 2011 års nobelpris i fysik för upptäckten, se List_of_Nobel_laureates_in_Physics och Accelerating_expansion_of_the_cosmos.

Universum tycks nu bestå av:

70 % mörk energi (OBS! detta är inte materia)

26 % exotisk mörk materia (vi vet inte vad det är)

3.5 % osynlig vanlig materia

0.5 % synlig vanlig materia

Det är alltså dessa ynka 0.5 % som astronomerna kan studera.

Det finns delade meningar om vad den mörka energin är för något. Somliga
vill tolka den som Einsteins kosmologiska konstant. Andra menar att detta
skulle leda till orimliga konsekvenser, och har infört en variant, som
kallas Quintescence. Dessa frågor behandlas i ett par artiklar i
Scientific American januari, 2001. Det medges att de inte är särkskilt
lättlästa för den oinvigde, men det här är inga lätta saker. Men spännande!

Den sammansättning av universum som ges ovan är vad som gäller nu. I en tidigare
epok dominerade strålningen, som spelar liten roll idag. Den mörka energin
deltar idag inte alls i universums expansion. Det är viktigt,
hade den gjort det, hade galaxhopar, galaxer och stjärnor inte kunnat bildats.
I modellen med "Einsteins kosmologiska konstant" är den mörka energin
verkligen konstant. Den spelade alltså en obetydlig roll i det unga
universum. Vad som då blir svårförklarligt, är att vi lever i en epok just
när den mörka energin börjar dominera över materien. Detta blir lättförklarligt
i "quintescens" modellen. Där deltar den mörka energin i universums expansion
ända tills den epok då universum upphör att vara strålningsdominerat.

Bland nyare upptäckter är att det storskaliga rummet i universum är plant,
alltså inte krökt. Vidare nämns i artiklarna en modell som på engelska
kallas "inflatory universe model". Det kan närmast översättas med
"uppblåsningsmodellen av universum". Det innebär att universum i ett
mycket tidigt stadium undergick en enorm expansion.
Det förklarar mycket som inte går att förklara med den klassiska
Big Bang modellen.

Se vidare Dark_Energy, mörk-energi, mörk-materia och (vad gäller universum accelererande expansion) Länk 1. Under länk 2 (Ask an astronomer) finns ett stort antal länkar och frågor/svar om kosmologi.

Question Image

Länkar: http://www.eso.org/~bleibund/papers/EPN/epn.html  |  http://curious.astro.cornell.edu/cosmology.php
/KS/lpe 2001-01-29


När började den moderna kosmologin?

Gymnasium: Universum-Solen-Planeterna - kosmologi [12602]
Fråga:
Hej, jag har ett specialarbete om moderna kosmologin, när började den?
/Mohammad  H,  Brännkyrkagynasium,  Midsommarkransen 2004-01-15
Svar:
Hej Mohammad! Det är omöjligt att svara på eftersom begreppet 'modern kosmologi' inte är väldefinierat. Man kan säga på 1600-talet då en korrekt världsbild började växa fram. Fler milstolpar: Einsteins allmänna relativitetsteori 1916; upptäckten av Hubble att universum expanderar (1929); Gamows formulering av Big Bang teorin (40-talet); förståelsen i början av 50-talet hur sjärnorna producerade sin energi och hur grundämnena bildats; Penzias och Wilsons upptäckt 1965 av den kosmiska mikrovågsstrålningen; HST (HubbleSite); de senaste resultaten från Wilkinson Microwave Anisotropy Probe (WMAP) som ger mycket noggrann information om universum, bland annat vad universum består av, se bilden nedan från "NASA/WMAP Science Team".

Börja med att slå på kosmologi i Nationalencyklopedin, där finns en bra artikel av Peter Nilsson. Wikipedia har ett par bra artiklar som mycket detaljerat behandlar även historiska aspekter: Cosmology och Timeline_of_cosmology. Sedan finns det många källor att fortsätta med, ovanstående och länken nedan ger en början.

Question Image

/Peter E 2004-01-16


Hur fungerar Big Bang?

Fråga:
Enligt teorin skapades universum i en sk "big bang".
Det måste ju rimligtvis betyda: Ur ingenting skapades allting! Finns det någon teori som ger en god förklaring om hur detta fungerar!?
/Sven  E,  Furuhedsskolan,  Kalix 2004-09-20
Svar:
Big Bang (eller Stora smällen), är standardteorin om universums uppkomst. Enligt denna teori skapades universum och rumtiden för ca 13,7 miljarder år sedan, då universum började expandera från att ha varit koncentrerat i en punkt. Termen myntades av astronomen Fred Hoyle (som var motståndare till den) under en radiointervju i BBC den 28 mars 1949. Termen i sig är dock missvisande då det inte handlar om en explosion av materia i en tom rymd utan istället om en expansion av rummet självt som materian befinner sig i. (Från Wikipedia Big_Bang).

Man är ganska överens om beskrivningen hur Big Bang gick till. Vad som fanns före Big Bang och vad som finns utanför vårt universum vet man inget om även om det finns spekulationer. Speciellt vet vi inget om hur universum skapades (dvs vad som orsakade Big Bang). Vi kan med våra observationer bara "famla lite i kanterna", ungefär som en blind utforskar ett djupt hål genom att känna längs kanten.

Fysiken för det tidiga universum är i gränslandet mellan kosmologi (vetenskapen som behandlar universums uppkomst och utveckling) och filosofi eftersom vi ännu inte har en fullständig teori för hur alla de fyra grundläggande krafterna förenas. Det finns därför inget som länkar vad som hände i det tidiga universum (före Planck-tiden 10-43 s) med vad vi kan observera i dag. Detta gör sådana spekulationer till mer filosofi än vetenskap.

Supersträng-teorin hävdar att universum hade 10 dimensioner under Planck-eran. Dessa övergår 4 dimensioner efter Planck-eran, och de 6 dimensionerna är fortfarande förkrympta och märks alltså inte. Under Planck-eran kan man beskriva universum som ett kvant-skum med 10 dimensioner och som innehåller Planck-längd stora svarta hål som skapades och försvann utan orsak och verkan. Med andra ord: försök att inte tänka på denna eran! :-)

C:a 10-35 sekunder efter Big Bang var det en mycket snabb expansion av universum. Detta fenomen kallas inflation. Observera att denna inflation skedde med överljushastighet. Detta är inget brott mot den speciella relativitetsteorin eftersom den var en expansion av universum självt och inte materian. Vårt synliga universum är då en bubbla - i nedanstående bild den gula bubblan markerad "us". De andra bubblorna är då i någon mening inte reella eftersom de är utanför vår horisont och vi kommer aldrig att kunna kommunicera med dem. Observera alltså att HELA rymden expanderar- även avståndet mellan bubblorna. Detta betyder att två bubblor som inte är i kontakt med varandra vid en viss tidpunkt aldrig kommer att bli det!

Inflationen orsakades av att symmetrin mellan den starka kärnkraften (färgkraften) och den elektrosvaga växelverkan bröts. Detta orsakade en "fasövergång" som gav energi till att driva den snabba expansionen.

Vissa teorier säger att hela vårt universum är ett svart hål med energin noll, se Zero-energy_universe. Eftersom vi aldrig kan kontrollera detta är det en teori som är lika mycket värd som andra. Fenomen som inte kan mätas brukar inte klassificeras som vetenskap. Men det kan ändå vara roligt att filosofera om det :-)! I artikeln nedan (länk 1) finns en ljudfil som visar hur Big Bang lät. Länk 2 ger mer ganska elementär information på svenska om big bang. Se även övriga frågor big bang och Wikipedia-artikeln Big_bang. Den kände populärvetenskaplige författaren John Gribbin har intressanta funderingar om universum i John Gribbin's home page (Introduction to Cosmology). James Schombert v6.2 är en guldgruva med föreläsningar bland annat om kosmologi. TalkOrigins Evidence for the Big Bang är en omfattande och ganska avancerad FAQ.

Tidslinje för Big Bang

Tid Temperatur Händelse
0 Big Bang
10-43 s Planck-tiden, kända naturlagar gäller
10-35 s Inflation
300 s Bildande av 4He
380000 år 3000 K Kosmisk bakgrundsstrålning
13.7109 år 3 K Nu


Låt mig avslutningsvis försöka besvara några vanliga frågor om Big Bang.

Vem hittade på big bang?

Aleksandr Fridman och Georges Lemaître föreslog redan på 20-talet att universum uppkommit genom att en "uratom" expoderade. Den ukrainske fysikern George Gamow (George_GamowGeorge Gamow (George_Gamow förutsade 1948 även att det överallt i universum skulle finnas mikrovågsstrålning med temperaturen c:a 5 K. Uttrycket big bang var från början en nedlåtande beteckning som en motståndare Fred Hoyle (som föreslagit den s.k. steady state teorin, Steady_State_theory) hittade på.

Vad hände före Big Bang?

Frågan är, som antytts ovan, meningslös eller utan innehåll. Det är som att fråga: vad finns norr om nordpolen? Före Big Bang fanns ingen tid, och man kan därför inte tala om vad som hände.

Vilka bevis finns det för Big Bang teorin?

De viktigaste är
  • Olbers paradox
  • Universums expansion (upptäckt av Hubble pÃ¥ 1920-talet)
  • He-förekomsten i gamla stjärnor (frÃ¥ga 13117)
  • Kosmisk bakgrundsstrÃ¥lning


Anses Big Bang-teorin numera vara så etablerad att man inte kan ifrågasätta den?

I stora drag, ja. Alternativet, Fred Hoyles Steady State teori, får nog anses överspelad. Dels var den lösningen på problemet att universum tycktes vara yngre än vissa gamla stjärnhopar. Detta är löst i dag genom att avståndsskalan har ändrats mycket. Dels förklarar Steady State teorin inte den kosmiska bakgrundsstrålningen och heliumförekomsten i gamla stjärnor, något som Big Bang teorin gör elegant. Detaljerna i Big Bang teorin kan säkert komma att revideras med nya observationer. Vi skall också komma ihåg att en fysikalisk teori beskriver vad vi kan observera, och säger inget om t.ex. varför universum började expandera eller vad som händer utanför vår händelsehorisont (så långt vi teoretiskt kan se, dvs i princip ljushastighetenuniversums ålder).

Om all materia, ljus som mörk, varit samlad i en punkt, singularitet1 eller uratom, måste väl gravitationen ha varit oändligt stor, åtminstone ögonblicket efter att expansionen startat och fysikens lagar börjat gälla. Då är det svårt att förstå hur expansionen alls kunde ske, hur den kunde övervinna den ofattbara gravitationen, när inte ens gravitationen i ett s.k. svart hål tillåter något att slippa ut.

Ja, det är svårt att förstå. Fysiken kan ibland med trick hantera sådana här singulariteter (oändligheter), men innan 10-43 sekunder efter Big Bang kan vi i dag inte ge en bra beskrivning. Ett trick som används t.ex. för svarta hål är kosmisk censur. Detta betyder att singulariteten existerar endast matematiskt och inte som en fysisk verklighet som vi kan observera eller mäta. Svarta hål omger sig nämligen av en händelsehorisont som gömmer ("censurerar") singulariteten. Se vidare fråga 14367.

Vidare är det förbryllande att man kan se universum strax efter big bang när man tittar riktigt långt bort. Att man ser bakåt i tiden förstår jag gott, men det ljus som skickades iväg under den första tiden borde väl sedan länge ha passerat oss och fly bort ifrån oss med ljusets hastighet. Ser vi det ljuset "på ryggen" och i rakt motsatt riktning mot det ställe i universum där det hela började? Hur ser det i så fall ut när vi riktar våra teleskop ditåt, mot expansionens centrum?

Vår del av universum (det synliga universum) är enligt standardmodellen bara en liten den av vad som skapades vid inflationen. Varje liten bubbla i figuren nedan är ett universum, men de är alla ekvivalenta och inget innehåller expansionens centrum. Detta är svårt att förstå om man går ända tillbaka till tiden noll, men det kan vi alltså inte göra. Vad vi ser om vi går så långt bort som möjligt (13.7 miljarder år) är eldklotet som hade en temperatur på 3000 K, men som nu pga expansionen har en temperatur på 3 K.

Man kan fråga sig varför universum är så homogent (den kosmologiska principen, universum har samma egenskaper i alla riktningar). Om man tittar åt ett håll 14 miljarder ljusår bort och i motsatt riktning på samma avstånd, så har båda områdena nästan exakt samma temperatur. Eftersom de inte kan ha stått i kontakt med varandra (avståndet är 28 miljader ljusår så ljuset kan inte ha hunnit gå hela vägen mellan dem) kan man tycka detta är konstigt. Anledningen är inflationen. Detta var ett av skälen till att man införde inflationen. Före denna snabba exansionen var de två områdena så nära varandra att de kunde vara i termisk jämvikt.

En konstighet med universums expansion är det faktum att galaxer kan kollidera trots att rymden mellan dem hela tiden utvidgar sig. Återigen, om de dras till varandra av gravitationen så borde väl gravitationen ha förhindrat att de först avlägsnade sig från varandra.

Mja, man får inte se det så. Det är rymden mellan galaxerna som expanderar. Galaxhopar (grupper av galaxer) är bundna med tyngdkraften och galaxernas rörelse inbördes i hopen bestäms av gravitationen och inte expansionen. Vår granngalax Andromedagalaxen, som befinner sig på c:a 2.5 miljoner ljusårs avstånd, rör sig faktiskt mot vår vintergata i stället för att avlägsna sig som de flesta andra galaxer gör.

Sammanfattning av de viktigaste bevisen för Big Bang

1 Rödförskjutning: Galaxernas spektra är rödförskjutna med ett belopp som är proportionellt mot avståndet: Hubbles lag v=dH, där v är hastigheten, d är avståndet och H är hubblekonstanten.

2 He förekomst: Förekomsten av He i de äldsta stjärnorna är 25% vilket är precis vad Big Bang modellen förutsäger, se fråga [13117].

3 Kosmiska bakgrundsstrålningen: Mikrovågsstrålningen med en temperatur av 3K härrör från c:a 400000 år efter Big Bang då universum blev transparent genom att H/He kärnorna rekombinerade med elektroner.

Se vidare Big_Bang och på engelska Big_Bang_Theory

___________________________________________________________

1 Singularitet. I matematiken definieras singularitet som en odefinierad punkt hos kurva, yta eller funktion. I kosmologi definieras singularitet som en punkt i rumtiden i vilken rumtidskrökningen är oändlig (svart hål).

Question Image

Länkar: http://www.newscientist.com/article.ns?id=dn4320  |  http://kasper.pixe.lth.se/NuclearPhysics/slideShow/nobel2006/nobel2006_files/frame.htm
/Peter E 2004-09-21


Jag undrar över om universum har en början och ett slut

Gymnasium: Universum-Solen-Planeterna - kosmologi [13849]
Fråga:
Hej! Jag jobbar med ett arbete om universum. Jag undrar över om universum har en början och ett slut. Har det det? Tack på förhand!
/Emma  W,  Falu Fri Gymnasium,  Falun 2005-03-08
Svar:
Hej Emma! Det är mycket djupa frågor om universum och kvantmekanik för tillfället! Detta är svåra frågor som ingen egentligen har exakta svar på. Newtons lagar är lättare på det sättet :-)!

Tidsmässigt antar man att universum har en början vid Big bang. Vad som eventuellt skedde före denna anses vara omöjligt att någonsin ta reda på. Om universums expansion fortsätter utan att stoppas upp (som det ser ut för tillfället) så kan man inte säga att universum har ett slut. Men det kommer att bli ganska trist utan stjärnor och galaxer.

Om du menar rumsmässigt så är det svårare att svara. Om universum har mycket massa kan man tänka sig att krökningen hos rymden var positiv. Det är svårt att föreställa sig att en rymd med tre dimensioner (och en extra tidsdimension) är krökt, men tänk dig en liknelse med två dimensioner: jordytan är ändlig (har en viss yta) men obegränsad - du kommer aldrig till en vägg som säger att här slutar jorden. En sådant system kallar vi ändligt men obegränsat.

Om universum är ändligt eller oändligt vet vi helt enkelt inte. Den vetenskap som sysslar med universums struktur och utveckling kallas kosmologi. Med hjälp av bland annat observationer från satelliten WMAP av den kosmiska bakgrundsstrålningen (se kosmisk bakgrundsstrålning) har man satt upp en teori som bland annat säger att universum är 13.7 miljarder år gammalt och att universum inte är krökt. På sajten
Wilkinson Microwave Anisotropy Probe (WMAP) finns massor av information om detta - inte så lättförståeligt tyvärr. Bilden nedan är från denna sajt och illustrerar hur man mäter universums krökning (genom, verkar det, att skicka ut sniglar med laserpekare :-)). Lycka till med ditt arbete Emma!

Question Image

/Peter E 2005-03-08


4% av universum är vanlig materia, 96% är mörk materia och mörk energi. Hur vet man det?

Fråga:
Hej!
4% av universum är materia som vetenskapen känner till, 96% är mörk materia och mörk energi.
Hur vet man det?
Och de hypoteser/teorier om universums utveckling som kosmologerna framlagt blir ju byggda på en rätt liten del känt material. Kan inte häpnadsväckande utvecklingsalternativ "dölja sig" bland de 96 okända procenten?
/Thomas  Ã,  Knivsta 2012-05-14
Svar:
Från olika observationer kan man bestämma ett antal parameterar som ingår i den kosmologiska standarmodellen (Big Bang, Big_Bang), se figuren nedan (från Lambda-CDM_model) och fråga [11987]. Många av parametrarna är lite kryptiska. Ett par av de mer lättförståeliga är

WL=0.728

som är andelen mörk energi,

Wc=0.227

är andelen mörk materia,

Wb=0.0456

är andelen normal materia och

t0=13.75 Gyr (miljarder år)

är universums ålder (tiden sedan big bang).

Ovanstående värden på parametrarna förstsätter alltså att vår modell för universums utveckling är korrekt. För andra modeller (vilka inte omöjliga) får man andra värden på parametrarna, och kanske även andra parametrar. Parametrarna och parametervärdena är alltså modellberoende.

Som det gäller för alla fysikaliska teorier: vi kan aldrig bevisa att en teori är rätt. Vi kan bara genom experiment och mätningar visa att en teori är bristfällig. Det råder emellertid stor enighet om att denna big bang standardmodell (Cosmology_(physics)) är korrekt.

Question Image

/Peter E 2012-05-15


Hur kan man bestämma universums krökning?

Fråga:
Läsandes "A universe from nothing" av Lawrence M Krauss är det en sak jag inte begriper. Det kan ha att göra med bristfälliga engelska- eller fysikkunskaper, men jag skulle väldigt gärna vilja förstå detta då jag finner det spännande.

I bokens tredje kapitel redogör han för hur man i slutet av 1990-talet med hjälp av en (eller flera?) ballong över antarktis gjorde mätningar av bakgrundsstrålningen i ett projekt som gick under benämningen BOOMERANG. Enligt författaren kan man ur denna data, samt faktumet att universum var 300000 år gammalt då strålningen sändes ut och inget då kunde ha förflyttat sig längre än just 300000 ljusår dra slutsats huruvida universums form är öppet, slutet eller plant, via någon slags vinklar. Resultatet blev tydligen det sistnämnda. Tyvärr förstår jag inte och skulle vilja ha det beskrivet på svenska.
/Niklas  A,  Ystad 2013-03-04
Svar:
Boken finns även utmärkt översatt till svenska: Ett universum ur ingenting, Fri Tanke förlag. Se Lawrence_M._Krauss för information om författaren och A_Universe_from_Nothing:_Why_There_is_Something_Rather_than_Nothing om boken.

Nu är det kanske inte engelskan som är problemet. Det här handlar om mycket kompexa och anti-intuitiva saker. Men jag skall göra ett försök till förklaring så långt jag begripit det.

Boken behandlar kosmologi, dvs hur universum skapats och utvecklats och dess storskaliga struktur. Låt oss börja med att diskutera bokens titel. Hur kan universum uppstå från ingenting? Universum innehåller ju bevisligen energi i form av materia och strålning. Gäller inte lagen om energins bevarande?

Jodå, den gäller men energi påverkas av gravitation. Kroppar som befinner sig i ett gravitationsfält har viloenergi (E=mc2), rörelseenergi och potentiell energi. Om en kropp är bunden i gravitationsfältet (som månen av jordens) så är den potentiella energin negativ. Man kan alltså skapa materia och strålning genom att den potentiella energin blir mer negativ. Detta är inte alls konstigt, det sker när en atom sänder ut ljus (där är kraften den elektromagnetiska) och vid betasönderfall då en elektron skapas.

Den teoretiskt vackraste (och enklaste) modellen av universum är enligt Krauss ett plant (till skillnad från krökt) universum med totala energin noll. Vad menar vi med ett krökt universum? I tre dimensioner är det svårt att föreställa sig ett krökt rum, så låt oss betrakta två dimensioner, se bilden i fråga [13849]. I ett plan förblir parallella linjer parallella, i ett positivt krökt plan (klot) går linjerna ihop, och i ett negativt krökt plan (sadel) går de isär.

Hur kan man då bestämma krökningen hos vårt universum? Indirekt kan man göra det genom att bestämma universums densitet. Gravitationen kommer beroende på densiteten att bromsa upp universums expansion mer eller mindre. Om densiteten är låg har vi negativ krökning och expansionen fortsätter, om densiteten är hög har vi positiv krökning och universum kommer med tiden att kontrahera. I läget mellan dessa när expansionen går asymptotiskt mot noll har vi det föredragna plana universum.

Tyvärr hittar vi inte tillräckligt med materia för att göra universum plant, även om vi förutom stjärnor och gas tar med den mystiska mörka materien som vi vet finns men som vi inte vet vad den är.

Kan vi bestämma universums krökning på något annat sätt? Ja, det kan vi på ett mycket direkt sätt genom att observera den kosmiska bakgrundsstrålningen, se fråga [705]. Bakgrundsstrålningens temperatur varierar mycket lite men mätbart i olika riktningar, se den ovala bilden nedan som visar temperaturen i alla riktningar. Blått är kallare och gult/rött varmare. Kallt kan även tolkas som lägre densitet och varmt som högre. Genom att bestämma hur kornig strukturen är kan man bestämma krökningen.

Den översta figuren nedan visar oss och en bubbla med lite högre densitet vid tiden 300000 år efter Big Bang då universum blev genomskinligt genom att den elektromagnetiska strålningen frikopplades från materien. Vi ser alltså bakgrundsstrålningen som en "vägg" av strålning på 14.4 miljarder ljusårs avstånd. Om vi korrigerar för universums expansion - en faktor tusen - blir avståndet till bubblan 13.4109/1000 = 13.4106 ljusår. Vinkeln som bubblan upptar blir

300000/(13.4106) = 0.022 radianer = 0.022180/p = 1.3o

I den nedre figuren visas fördelningen av bubbelstorleken (skalan i grader längst upp). Vi ser att maximum av fördelningen är vid c:a 1o, och större bubblor blir snabbt färre. Kan man förstå detta? Ja, det är helt enkelt så att om en bubbla är större än 300000 ljusår (vilket motsvarar 1.3o) så "vet" den inte att den är en bubbla eftersom gravitationen förmedlas med ljushastigheten. Större bubblor har alltså vid denna tidpunkt ingen tendens att kontrahera och skapa bubblor med högre densitet.

Hittills har vi räknat med ett plant universum. Vad händer om universum är krökt? Det kan vi se i den andra figuren uppifrån. I ett slutet universum konvergerar ljusstrålarna (streckade linjer) så man skulle uppfatta bubblan som mycket större än vad den är. I ett öppet universum divergerar strålarna, så bubblan uppfattas som mindre. Observationerna visar klart att ett plant universum är mest sannolikt - precis som teoretikerna ville ha det! (Dom brukar få som dom vill :-)!)

Områden med lite högre densitet (gula/röda i bilden nedan) behövs för att man skall kunna förstå hur materialet till galaxbildning kunde dra sig samman - en helt likformig densitet hade inte givit upphov till någon kontraktion och därmed inga galaxhopar. Man tror att ojämnheterna i densitet uppkommit mycket tidigt efter Big Bang genom kvantmekaniska så kallade vakuumfluktuationer.

Se vidare Kosmisk_bakgrundsstrålning.

Nedan finns en föreläsning av Krauss. Denna föreläsning var ursprunget till boken.

Föreläsningen har försvunnit, men det finns ett par här:

https://www.goodreads.com/videos/list_author/1410.Lawrence_M_Krauss

Det faktum att materia (normal och mörk) nu förekommer i samma storleksordning som mörk energi gör att vi kan observera galaxer och den kosmiska bakgrundsstrålningen. Från detta kan vi dra slutsatser om Big Bang och om hur universum är uppbyggt. Låt oss avsluta med att citera Krauss:

"We live in a very special time: the only time when we can observationally verify that we live at a very special time!"

Länk 1 är till WMAP, den hittills bästa proben (från NASA) för den kosmiska bakgrundsstrålningen. Länk 2 är till Planck, nästa generation prob från European Space Agency (ESA). Data från Planck (mycket bättre an WMAP data) kommer att publiceras i mars 2013. /fa

Question Image

Länkar: http://map.gsfc.nasa.gov/  |  http://www.rssd.esa.int/index.php?project=PLANCK
/Peter E 2013-03-04


Vad består universum av?

Fråga:
Hej!
Ibland ses i medier uppgifter om antal partiklar per m^3 eller antal partiklar per cm^3 i rymden, dvs långt utanför jordatmosfären. Antalet varierar rätt mycket och jag undrar om det finns något tillförlitligt värde och vilket detta är. Finns även något beräknat/uppmätt värde på antal neutriner per m^3? Även fotoner borde kunna räknas på analogt sätt. Finns mätvärde?
/Thomas  Ã,  Knivsta 2013-11-22
Svar:
Densiteten av materia i universum varierar mycket från superhöga densiteter i svarta hål och neutronstjärnor till mycket låga värden utanför galaxhopar. Jag antar emellertid att du frågar om medeldensiteten.

Den klassiska kosmologin med bara normal (baryonisk) materia gav en densitet på 6 väteatomer/m3 om universum var plant (kritisk densitet). Eftersom endast 4.6% av den totala energin (massan) är baryoner (se fråga [18686]), så sjunker baryondensiteten till c:a 1/4 väteatom/m3. Från förekomsten av lätta nuklider efter Big Bang kan man dra slutsatsen att en försumbar del av den mörka materien är baryoner. Denna måste alltså bestå av något okänt, t.ex. WIMPs ("tunga neutriner").

Nära tiden för Big Bang dominerade strålning över materia (till höger i nedanstående figur där 1/R [skalfaktorn R] är stort). Allteftersom universum expanderar (R blir större) avtar materietätheten som 1/R3. Strålningstätheten avtar emellertid som 1/R4 eftersom man även måste ta hänsyn till att strålningens energi avtar på grund av att våglängden ökar som R. Vid en punkt är alltså densiteten av strålningsenergi och materia lika. Nu (13.75 miljarder år efter Big Bang) är strålningsenergin nästan försumbar.

Antalet fotoner är 3.7108/m3 .
Detta låter som mycket, men man skall komma ihåg att energin för temperaturstrålning vid 2.7 K är mycket liten (3kT=1.110-22 J).

I länk 1 diskuteras den kosmiska densitetsparametern W och hur denna är summan av materian (baryonisk och mörk), relativistiska partiklar (neutriner och fotoner) samt mörk energi.

Vad gäller densiteten av kosmiska neutriner så har man ännu inte detekterat dessa, men teoretiska beräkningar uppskattar att det finns 3.3108/m3 . Detta är som synes nästan exakt samma som ovanstående fotondensitet.

Se även länk 2 och Cosmic_neutrino_background.
____________________________________________________________

http://www.maths.qmul.ac.uk/~jel/ASTM108lecture8.pdf.

http://lappweb.in2p3.fr/neutrinos/anunivers.html

Question Image

Länkar: http://hyperphysics.phy-astr.gsu.edu/hbase/astro/denpar.html  |  http://map.gsfc.nasa.gov/universe/uni_matter.html
/Peter E 2013-11-22


Med vilken hastighet expanderar de "yttersta" delarna av universum?

Fråga:
Hej!
Universum utvidgas enligt gällande modell.
Med vilken hastighet sker det i de "yttersta" delarna?
Pågår inflation därborta fortfarande eller var det något som bara ägde rum strax efter Stora Smällen?
/Thomas  Ã,  Knivsta 2014-03-18
Svar:
Standardsvaret om delar av universum expanderar med en hastighet överstigande ljushastigheten är ja, men man skall ha klart för sig att man kan definiera hastigheter och avstånd på flera sätt, se Faster-than-lightUniversal_expansion.

Låt oss passa på tillfället att ta upp annonseringen i går (17/3/2014) att man fått direkta stöd för inflationsteorin och att man har fått fram indikationer på gravitationsstrålning, se pressmeddelandet under länk 1.

Ett par citat ur pressmeddelandet:
Researchers from the BICEP2 collaboration today announced the first direct evidence for this cosmic inflation. Their data also represent the first images of gravitational waves, or ripples in space-time. These waves have been described as the "first tremors of the Big Bang." Finally, the data confirm a deep connection between quantum mechanics and general relativity.

"This has been like looking for a needle in a haystack, but instead we found a crowbar," said co-leader Clem Pryke (University of Minnesota).

When asked to comment on the implications of this discovery, Harvard theorist Avi Loeb said, "This work offers new insights into some of our most basic questions: Why do we exist? How did the universe begin? These results are not only a smoking gun for inflation, they also tell us when inflation took place and how powerful the process was."


Båda dessa upptäcker (inflation och gravitationsvågor) är, om de bekräftas, av nobelprisklass. Vad man gjort är att man har mätt cirkulärpolarisationen av den kosmiska bakgrundsstrålningen (se nedanstående bild) med ett teleskop (BICEP2) på sydpolen. Placeringen på sydpolen är för att undvika att mikrovågsstrålningen absorberas av vattenånga. Sydpolen är den bästa platsen för detta eftersom den befinner sig på 3000 m:s höjd i jordens torraste öken.

Här är inslag från Sveriges Radio/SVT:

http://sverigesradio.se/sida/default.aspx?programid=406

http://sverigesradio.se/sida/avsnitt/333765?programid=412

http://www.svt.se/nyheter/vetenskap/eko-fran-big-bang-upptackt

Fler länkar:

http://www.popast.nu/2014/03/spar-av-gravitationsvagor-bekraftar-universums-ofattbara-inflation.html

http://www.huffingtonpost.com/max-tegmark/good-morning-inflation-he_b_4976707.html

http://www.dn.se/nyheter/vetenskap/vagor-visar-universums-forsta-sekund/

http://profmattstrassler.com/articles-and-posts/relativity-space-astronomy-and-cosmology/history-of-the-universe/inflation/

http://profmattstrassler.com/articles-and-posts/relativity-space-astronomy-and-cosmology/history-of-the-universe/hot-big-bang/

http://profmattstrassler.com/2014/03/17/bicep2-new-evidence-of-cosmic-inflation/

Se dock nedanstående där man tyvärr tvingas erkänna fel i tolkningen av data:

http://sverigesradio.se/sida/artikel.aspx?programid=415&artikel=5976181
http://www.svt.se/nyheter/vetenskap/beviset-for-universums-fodelse-minst-halften-var-damm

... och guldet blev till damm?

Question Image

Länkar: http://www.cfa.harvard.edu/news/2014-05
/Peter E 2014-03-18


Anpassade naturkonstanter

Fråga:
Hej! Jag undrar vad ni säger om det här klippet jag såg:
https://youtu.be/UpIiIaC4kRA
Stämmer alla uppgifter i klippet? Har personen som gjorde klippet missat något, vad i så fall?
Om länken inte funkar, sök på "the fine tuning of the universe" på YouTube. Klippet är 6 min och 27s långt. Jag hade verkligen uppskattat svar!
/Eskil  F,  Mariaskolan,  Malmö 2016-01-09
Svar:
Eskil! Jag antar att du, eftersom du ställer frågan, är lite misstänksam. Källkritik är viktig eftersom det finns mycket skräp och felaktigheter på webben.

Det första man skall fundera på är om källan till information har en alternativ agenda, alltså inte enbart redovisa vetenskapliga fakta och teorier på ett balanserat sätt.

Videon du refererar till är från en site som heter Reasonable faith (länk 1). Redan namnet får alarmklockorna att ringa! När det sedan framgår att avsikten är av påvisa existensen av en gud genom att (bland mycket annat) hävda att naturkonstanterna har exakt de mycket väldefinierade värden som krävs för att stjärnor och planeter med avancerade livsformer skall kunna bildas.

Detta är nära besläktat med kreationisternas (se Intelligent_design) resonemang att livsformer är alltför är alltför komplexa för att ha kunnat utvecklas enligt Darwins teori genom mutationer och naturligt urval, se fråga [13720].

Den klassiska invändningen mot ovanstående är naturligtvis: om det finns en gud som skapat vårt universum med liv och allt, vem skapade denna gud? Existensen av en skapande gud löser alltså inga problem!

I den första videon nedan hävdas (utan angivande av källa) att gravitationskonstanten G inte kan avvika från den befintliga med mer än en del på 1060. Detta är naturligvis fullständigt nonsens: G kan variera med mycket mer utan att påverka universums struktur särskilt mycket.

I videon påstås: "The constants and quantities are not determined by the laws of nature. There is no reason or evidence to suggest that fine tuning is necessary."

Konstanterna kan mycket väl bestämmas av fysikaliska lagar, visserligen inte av nu kända lagar, men det är inte uteslutet att framtida teorier (storförenad teori (GUT), strängteori?) kan förutse värden av konstanter eller förhållanden mellan konstanter.

Man använder sig även av det pseudovetenskapliga tricket med korta citat från kända fysiker. Tagna ur sitt sammanhang ger dessa i flera fall en falsk bild av deras syn på religion.

Det finns flera exempel på påståenden att naturkonstanterna måste vara mycket exakt anpassade. Bilden sist i svaret ger ett exempel från länk 2. De givna värdena är vagt definierade eller fullständigt felaktiga. Inga referenser för den givna precisionen ges.

Här är videon från Reasonable faith:




Här är Lawrence Krauss invändningar mot att naturkonstanter är exakt anpassade. (Från en diskussion om guds existens.)




Wikipedia-artikeln Fine-tuned_Universe är bra och balanserad. Se även fråga [19902].

Question Image

Länkar: http://www.reasonablefaith.org/finetuning  |  http://www.godandscience.org/apologetics/designun.html
/Peter E 2016-01-09


Sida 1 av 2

| Nästa

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

** Frågelådan är stängd för nya frågor tills vidare **
Länkar till externa sidor kan inte garanteras bibehålla informationen som fanns vid tillfället när frågan besvarades.

Creative Commons License

Denna sida frÃ¥n NRCF är licensierad under Creative Commons: Erkännande-Ickekommersiell-Inga bearbetningar