Vill du ha ett snabbt svar - sök i databasen:

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

192 frågor / svar hittades

: Energi [10142]
Fråga:
Så man kan alltså lagra energi i en supraledare?
Finns en gräns för hur mycket man kan lagra?
Låter som ett potentiellt framtida superbatteri...
/Mario  W,  2002-04-13
Svar:
Gränsen sätts av hur stor supraledande spole man kan tillverka.
Man har gjort sådana spolar med 10 m diameter. Det finns problem
med sådana magnetfält. Kreditkort raderas. En skiftnyckel kan bli en
livsfarlig projektil.
/KS 2002-04-15


Grundskola_7-9: Energi [10145]
Fråga:
Hejsan!

Om man skickar en foton mot en svart matt yta och den absorberas,
vart tar då fotonen vägen?
/Cecilia  H,  Teglaskolan,  Skara 2002-04-13
Svar:
Fotonen försvinner, men dess energi går till uppvärmning.
/KS 2002-04-15


Hur fungerar vattenkraft?

Fråga:
Jag skulle villja ha en bra beskrivning på hur elen enda uppifrån lule älven kommer hem till mig.
/Alex  N,  Asken,  Strängnäs 2003-11-25
Svar:
Vattenkraft är energi som utvinns ur strömmande vatten. Det man vanligen avser med vattenkraft är utvinning av den lägesenergi som vattnet har fått i sitt naturliga kretslopp genom soldriven avdunstning följt av nederbörd på högre liggande markområden. Vatten från regn eller smält snö samlas upp i floder och sjöar.

Vattenkraftverken utnyttjar alltså älvarnas fallhöjd och vattenflöde. Det är vattnets lägesenergi mellan två nivåer, omvandlat till rörelseenergi, som utnyttjas för att skapa elektricitet, se fråga [794].

Först har man dämt upp älven och leder vattnet i rör i stället för över de ursprungliga vattenfallen. Det ser INTE vackert ut, se nedanstående bild. Vattnet får driva turbiner, som i sin tur driver generatorer.

Nu skall elektriciteten transporteras till södra Sverige. För att få så lite förluster som möjligt, transformerar man upp till en hög spänning (380 kV). Effekten är spänningenströmmen. Hög spänning ger liten ström och därmed små förluster eftersom effektförlusterna går som strömmen i kvadrat (P=RI2).

I alla transportledningar har man trefas växelström. Det man vinner är att man genom att anpassa lasten på faserna får en mycket liten returström (nollan) varför man inte behöver en tjock återledare. I stället har man en mycket tunnare kabel som ofta sitter längst upp på masten.

Utanför din bostadsort transformeras spänningen ner i ett par steg, så att du får dina 230V i väggkontakterna.

När du sedan kopplar in en lampa, elektrisk motor eller värmeelement så går det en ström igenom apparaten. Beroende på apparat händer olika saker. En lampa värms upp så att den skickar ut ljus (och värme, vilket inte alltid är så bra). En elektrisk motor ger rörelse som kan utnyttjas t.ex. i en fläkt, värmepump eller kylskåp. I ett värmeelement förvandlas el-energin till värme. I slutändan förvandlas all el-energi till värme, som med tiden läcker ut i omgivningen.

Vattenkraft är en förnyelsebar energiresurs och påverkar miljön ganska lite förutom den skada som orsakas floderna som byggs ut med dammar, konstgjorda sjöar, vattenledare och kraftledningar (se nedanstående bild). Vattenkraft är jämfört med andra energikällor relativt billig vad gäller investeringar och drift. Nackdelen är ovanstående miljöpåverkan och den begränsade tillgången på utbyggningsbara vattendrag.

Se mer om elenergi och vattenkraft på: Energikunskap, Kuhlins hemsida om Vattenkraften i Sverige, Hydropower, Hydroelectricity, Vattenkraft och nedanstående länkar.

Question Image

Länkar: http://people.howstuffworks.com/hydropower-plant.htm
/Peter E 2003-11-29


Om elekticitet är ett kretslopp, varför talar man då om energiförbrukning?

Grundskola_7-9: Energi - energikällor, termodynamik [12575]
Fråga:
Om elekticitet är ett kretslopp som ni säger, som en kedja och inte förbrukas, varför talar man då om energiförbrukning? Varför kan man inte köra ett kraftverk en gång för alla så man får mycket ström och sedan bara återanvända det hela tiden? Är det bara för att tjäna pengar?

Samma sak med batterier. Varför tar de "slut" om strömmen är ett kretslopp? Strömmen går ju från ena polen genom kretsen med lampan eller bandspelaren och sen tillbaka genom batteriets andra pol. Varför kan man inte bara vända på batteriet sen och använda det på nytt när ena polen blir tom på ström och den andra full? Men då skulle väl inte de som tillverkar batterierna tjäna pengar på det...
/Johan  A,  2003-12-27
Svar:
En bra konspirationsteori, Johan, men den är inte korrekt :-).

Det som transporterar effekten (energi/tidsenhet) är elektrisk ström, se fråga [17955]. Om en användare tar ut effekt (t.ex. i ett värmeelement eller en elektrisk motor) så måste man tillföra effekt i kraftverket för att spänningen skall vidmakthållas.

Föreställ dig el-ledningen som ett vattenledningsrör. Elverket är pumpen som behövs för att driva vattnet. Abonnenterna tar ut energi med små skovelhjul som drivs av vattnet. Men det kostar energi att driva skovelhjulen, och denna tas från vattnet som bromsas in. Så pumpen (elverket) måste hela tiden pumpa in energi för att hålla igång vattnet. En liten del av energin går åt för förluster - friktion för vattenledningen, elektriskt motstånd för el-ledningen.

Om el-ledningen varit supraledande (inget motstånd) och ingen tar ut någon effekt, så är din teori korrekt. Men vad skall man med el-ledningen då till?

Vad gäller batteriet så kan strömmen bara gå åt ena hållet av fysikaliska skäl (undantaget förstås när du laddar batteriet från en yttre energikälla). I ett batteri lagrar man alltså kemisk energi, som man kan ta ut i form av elektrisk energi.

Observera att energiförbrukning är en ofysikalisk beteckning. Vad vi har att göra med hela tiden är omvandling mellan olika former av energi, t.ex. solens värme får vatten att avdunsta och samlas som moln, det regnar och vattenmagasinen fylls, vattenmagasinets potentiella energi blir till rörelseenergi, elektrisk energi som till sist blir till värmeenergi. Ett ständigt kretslopp alltså.

Simplicio: Jamen, det var ju det jag sa. Det är ett kretslopp och elbolagen är bara ute för att lura pengar av oss...

Salviati: Ja, det kan så tyckas, men jag har utelämnat en komplikation: Termodynamik. Termodynamikens andra huvudsats säger att: Det finns ingen process vars enda resultat är att värme från en enda värmekälla helt omvandlas till mekaniskt arbete. För att kunna utnyttja en värmekälla måste vi ha möjlighet till kylning. I alla kraftverk som baseras på värme (kärnkraftverk, oljeeldade kraftverk) måste vattnet kylas efter turbinen för att skapa undertrycket som driver turbinen. Vi har alltså hela tiden förluster i kretsloppsprocessen.

Fotnot: Salviati är Galilei själv och Simplicio är en fiktiv anhängare av Aristoteles i Galileis bok Dialogue Concerning the Two Chief World Systems, 1632.
/Peter E 2003-12-30


Vilka fördelar och nackdelar har kraftverk som eldar med kol, olja och gas?

Grundskola_7-9: Energi - energikällor, fossila bränslen [12629]
Fråga:
1. Vilka fördelar och nackdelar har energikraftverk som eldar med kol, olja och gas?

2. Vad används energin från olja, gas och kol till?
/Anna  S,  Tullbroskolan,  Falkenberg 2004-01-20
Svar:
Här är två bra och lättillgängliga källor till information om energi: Vattenfall - Energikunskap och
Svensk Energi - skolmaterial. Den senare innehåller, förutom information om olika energislag, fria overheadbilder och bilder för presentationer.

Nationalencyklopedin är också en bra informationskälla.

Alla energikällor utom vattenkraft och vind/vågkraft fungerar på så sätt att man värmer upp ett medium (vanligen vatten) till hög temperatur. Med hjälp av en turbin (som förvandlar värmeenergin till mekaniskt arbete) och en generator får man elektricitet. Problemet är att bara en liten del av den urspungliga energin (typiskt 30%) blir mekanisk energi. Resten är värme som ofta bara går ut i naturen. Ibland kan man utnyttja energin i kylvattnet för uppvärmning, och då blir effektiviteten lite bättre.

Eftersom alla är fossila bränslen - man bör egentligen kalla naturgas för fossilgas - så bidrar de till växthuseffekten, se Växthuseffekten. Olja har fördelen att vara lätt att förvara och förbränna, så det används som bränsle i de flesta typer av transportmedel.

Förutom utsläpp av koldioxid och en del svavel orsakar kol flera tusen döda gruvarbetare vid brytningen. Kinesiska gruvor har när det gäller detta speciellt dåligt rykte.

När man jämför olika energikällor är det viktigt att man inte bara konstaterar att källan x är skadlig, så vi skall inte använda den. Man måste även ta med i beräkningen hur skadliga är de alternativ som finns?

Bilden nedan är från 'Svensk energi i skolan'.

Question Image

/Peter E 2004-01-20


Varför slår man inte ihop två deuterium till helium?

Fråga:
Jag håller på med ett arbete om fusion och har ett par frågor.
Varför inte använda flera deuterium och slå ihop? På så sätt får man ingen "överbliven" neutron som man får vi "vanlig" D-T fusion.
Sen så undrar jag också hur det kommer sig att en neutron kan komma ut ur det starka magnetfältet som håller plasman och träffa innerväggarna?
Tack på förhand.
/Viktor  W,  Johanskyttes skola,  Älvsjö 2004-05-22
Svar:
Viktor! Du har rätt i att d+d kan ge 4He, och det är denna man helst vill ha eftersom den är mest bunden (och ger därmed mest energi). Det finns emellertid två problem.

Det ena är att man får nästa inga 4He i d+d reaktionen, man får nästan bara 3He+n och 3H+p. Detta beror på att om man slår ihop två deuteroner så bildas 4He i ett högt exciterat tillstånd (över 20 MeV). Detta tillstånd är obundet och sönderfaller med utsändande av en proton eller en neutron. Det finns en mycket lite chans att det sönderfaller genom att skicka ut ett gamma, men eftersom den elektromagnetiska växelverkan är så svag är detta en nästan försumbar gren.

Det andra problemet är att man vill ha en neutron ut. Neutronen är oladdad, så den kan ta sig ut genom magnetfältet. Laddade partiklar hålls innestängda av magnetfältet. Neutronerna är alltså bärarna av energin man vill ha ut ur fusionsreaktorn. Hur man sedan skall ta vara på denna energi är ännu inte klart. Det är detta man vill finna ut med ITER (International Thermonuclear Experimental Reactor), se EFDA och International Thermonuclear Experimental Reactor (ITER).

Se även kall fusion.
/Peter E 2004-05-22


Varför räknas ett arbete endast om det sker i kraftens riktning?

Fråga:
Hej!
Varför räknas ett arbete endast om det sker i kraftens riktning? Står du stilla och håller en väska tex, så krävs ju också en kraft!
Inga läroböcker förklarar detta!
Tacksam för svar.
/Linda  M,  Stenungskolan,  Stenungsund 2004-10-11
Svar:
Mycket bra fråga Linda! Det förvånar mig att vi inte tycks ha besvarat den tidigare.

Ja, det kan tyckas konstigt! Låt oss först föreställa oss en väska som står på marken. Utför den något arbete? Du håller nog med om att den inte gör det.

Det är samma sak om du håller den i handen. Varför blir du då trött? Det är en fysiologisk effekt. För att hålla väskan stilla måste du spänna musklerna i armen. Detta kräver energi som kommer från t.ex. socker som transporteras med blodet. Om du nu inte utför ett arbete på väskan, var tar denna energi vägen? Vi måste ju hålla fast vid energiprincipen (energi kan varken skapas eller förstöras)! Jo den övergår i värme. Tänk på att när du arbetar hårt (t.ex. springer) så blir du varm.

Om du ställer ner väskan på golvet? Då utför du på samma sätt som ovan inget arbete eftersom kraften du påverkar väskan med är motsatt rörelseriktningen. Eftersom kraft och rörelse är i motsatta riktningar (din motkraft uppåt, rörelseriktningen neråt), så blir det av dig utförda arbetet negativt. Detta skall man tolka så att tyngdkraften utför ett arbete på dig. Om du vore annorlunda konstruerad (t.ex. med en motvikt som transporteras uppåt med hjälp av tyngdkraftsarbetet) skulle du kunna tillgodogöra dig och lagra detta arbete.

Om du släpper väskan då? Då ökar ju rörelseenergin. Ja, men då är det tyngdkraften som utför arbetet.

Nedanstående bild från länk 1 ger exempel på krafter som inte utför arbete.

Är inte fysiken underbar - man kan "förklara" allt :-)!

Arbete och rörelseenergi

Arbete definieras som dW = F·ds, där F är kraften som verkar på kroppen under sträckan ds i samma riktning som ds. (se även Fysikaliskt_arbete).

Om en kropp med massan m påverkas av en kraft F kommer kroppen att accelereras (acceleration a) och det utförda arbetet att förvandlas till rörelseenergi (vi bortser från friktion):

F ds = m a ds = m dv/dt ds = m dv ds/dt = m v dv

Integration från 0 till v ger rörelseenergin (kinetiska energin) K

K = int(m v dv) = mv2/2

Rörelseenergin är alltså det mekaniska arbete som krävs för att reducera en kropps hastighet från v till noll eller omvänt öka hastigheten från 0 till v.

Om F och ds är motriktade (du puttar på en bil som rör sig mot dig) så är produkten Fds negativ, och du utför ett negativt arbete på bilen. Bilen får då minskad rörelseenergi, dvs den bromsas upp.

Krafter som inte utför arbete

Ovanstående gäller förstås bara om det finns en komponent av kraften i rörelsens riktning. Det finns flera exempel på att en kraft verkar på en kropp utan att utföra arbete. Det mest uppenbara är kraften som påverkar en laddad partikel i ett homogent magnetfält, Lorentzkraften. Om laddningen är q, magnetfältet B och hastigheten v så blir kraften (se Lorentzkraft)

F = q (v x B)

där F, v och B är vektorer. Kraften, och därmed avböjningen är alltså vinkelrätt mot magnetfältet och mot rörelseriktningen. Det utförs alltså inget arbete på laddningen, och den kan fortsätta i en cirkel med konstant radie hur länge som helst. Detta drar man nytta av i en synkrotron där man kan lagra elektroner som kan cirkulera i princip hur länge som helst. Visserligen får man accelerera dem lite grann, men det beror på att elektronerna sänder ut ljus, s.k. synkrotronstrålning (Synkrotronstrålning), när de avböjs.

Ett annat exempel är en satellit som kretsar kring en planet i en exakt cirkulär bana med konstant hastighet. Eftersom gravitationskraften är riktad mot planeten och rörelseriktningen vinkelrätt däremot utför kraften inget arbete. Vi kan se att om gravitationskraften utfört ett arbete så måste satellitens bana ändras på något sätt om vi skall bevara den totala energin.

Lägesenergi

För att generalisera till elliptiska banor behöver vi definiera ännu ett begrepp. Lägesenergi är energi som finns hos ett föremål som påverkas av ett kraftfält, så som gravitation eller elektriska fält. Lägesenergi anges jämfört med en referenspunkt – exempelvis kan lägesenergi från gravitation anges jämfört med markhöjd eller havsnivån. Den mest strikta referenspunkten är en punkt på oändligt avstånd, där alla kraftfält är 0. Sett ur det perspektivet är den potentiella energin negativ för alla föremål i universum.

Om satelliten däremot går i en elliptisk bana finns det en komponent av gravitationskraften i rörelseriktningen: när satelliten rör sig närmare planeten utför gravitationskraften ett arbete på satelliten, vilket medför att satellitens hastighet ökar. När satelliten rör sig bort från planeten utför gravitationskraften ett negativt arbete (kraften och rörelsen är ju motriktade). Detta arbete tas från satellitens rörelseenergi som alltså minskar. Den totala energin E dvs summan av kinetisk energi (K) och lägesenergi (U(r)) är konstant:

E = K + U(r)

När satelliten kommer närmare planeten kommer alltså K att öka. U(r) blir då mer negativt för att E skall vara konstant. Vi förutsätter då den normala definitionen att lägesenergin U(&8734;) på oändligt avstånd är 0.

Anmärkning: Potentiell energi används ofta som synonymt till lägesenergi. Potentiell energi är emellertid ett lite vidare begrepp eftersom det även innefattar elastisk energi.

Se vidare Mekaniskt_arbete, Rörelseenergi, Potentiell_energi och länk 2.

Question Image

Länkar: http://hyperphysics.phy-astr.gsu.edu/hbase/work2.html  |  https://www.youtube.com/watch?v=sY4Y4AjfhGU
/Peter E 2004-10-11


Randell Mills och pseudovetenskap

Fråga:
En amerikan som heter Randell Mills har tydligen uppfunnit ett system för att få billig och miljövänlig energi från väte. Jag skulle vilja veta mer om detta!
/Sven  E,  Stockholm 2005-11-06
Svar:
Det du frågar om är nog det mest avancerade exemplet på pseudovetenskap och bluff och båg i hela vetenskapshistorien! Nationalencyklopedin säger om pseudovetenskap: mystisk eller spekulativ forskning som inte är accepterad av vetenskapssamhället, t.ex. alkemi, parapsykologi och astrologi. Fallet Mills påminner en hel del om Kall fusion (se fråga [2409]), men det är ett mycket mer avancerat bedrägeri.

Länken HYDROGEN IS POTENTIAL NEW ENERGY SOURCE beskriver vad idén är. I korthet går det ut på att kvantmekaniken är fel och att det tillstånd vi kallar grundtillståndet i väte inte är det lägsta tillståndet. Det finns enligt Mills flera mycket lägre liggande tillstånd, och man kan genom katalys med kalium få elektronen att gå till dessa lägre tillstånd. Väte i de lägre tillstånden kallar han hydrino. Man skulle då kunna utvinna c:a 40 till flera hundra eV energi från varje atom. Energiutvecklingen ger upphov till en plasma, vilket med vad som kallas en gyrotron kan transformeras till mikrovågor som i sin tur kan generera elektricitet.

Det är uppenbart att om allt detta vore sant skulle man t.ex. kunna köra bilar med vatten som bränsle! Uppfinningen skulle representera ett enormt ekonomiskt och miljömässigt värde. Mills har bildat ett bolag med en mycket professionell webbsajt BlackLight Power, Inc., och investerare har satsat mycket pengar. Bolaget säljer rättigheter till Mills uppfinning. Bolaget har en fin anläggning i New Jersey, men det tycks bara bestå av direktörer :-(.

Blacklight_Power är en balanserad sammanfattning av Mills idéer och patent. Det är ingen överdrift att säga att etablerade fysiker är måttligt imponerade, och de som är positiva tycks vara direktörer i Mills bolag.

Mills har även skrivit en bok The Grand Unified Theory of Classical Quantum Mechanics med helt nya teorier vad gäller fysiken. Boken (på 1800 sidor i 3 volymer!) ser mycket vederhäftig ut och måste vara resultatet av mycket arbete. Mycket i boken är korrekta textbokskunskaper och en del är fullständig rappakalja. Bland detta finns helt nya vinklingar och teorier, bland annat de nya lägre liggande tillstånden i väte.

En annan intressant sak är att Mills "härleder" förhållanden mellan elementarpartiklarnas massor som funktion av finstrukturkonstanten (en dimensionslös konstant med värdet 1/137.03599911 som förekommer i elektromagnetiska teorin). Bara detta, om det vore korrekt, skulle ge nobelpriset direkt eftersom Standardmodellen för elementarpartiklar och kraftverkningar inte ger några värden på dessa.

____________________


I detta sammanhang kan det vara på sin plats att diskutera vad naturvetenskap är och vad som å andra sidan är pseudovetenskap.

Naturvetenskap - vetenskaplig metod

Ett naturvetenskapligt arbetssätt är ett ständigt samspel mellan teoribyggande och observationer:

TEORI/MODELL <<--->> OBSERVATIONER/EXPERIMENT

I övrigt är följande punkter viktiga för vetenskaplig metod:


  • Alla resutat skall rapporteras i öppna tidskrifter
  • Resultat skall vara testbara och reproducerbara
  • Man får inte godtyckligt välja resultat som "passar"
  • Enklast möjliga beskrivning som inte strider mot tidigare observationer föredras
  • Acceptans för nya idéer – villighet att ompröva gamla teorier
  • Sakargument, ej status och "det är skrivet", bestämmer trovärdighet


Se även ett par frågor som behandlar detta under vetenskaplig metod.

Vad är inte vetenskap?

Vetenskap innefattar alltså det som är mätbart och testbart. Resultat av experiment skall vara reproducerbara. Pseudovetenskap å andra sidan karakteriseras av


  • Data är ofta anekdotiska

    - En vän jag litar på sa att han såg varelser stiga ut ur UFOt
  • Uttalanden är ofta mycket kategoriska eller mycket vaga

    - På vetenskapens nuvarande stadium kan vi säga att...
  • Brist på andra förklaringar

    - Att vi inte kan "förklara" ett fenomen betyder inte att det är övernaturligt
  • Slumpmässiga sammanträffanden är möjliga

    - Bara för att två händelser sker samtidigt behöver inte betyda att de är beroende av varandra
  • Referenser är vaga - auktoriteter används ofta

    - Den välkände Professor Bloggs vid CalTech säger att... I vetenskapen ger man en referens som kan kontrolleras. Det är en persons arbete (normalt publikation) som skall bedömas, inte personens tillförlitlighet
  • Vetenskapligt språk används ofta

    - Bitvis kan fakta vara korrekta – men de är ofta triviala eller irellevanta fakta från läroböcker
  • Hänvisningar till religiösa skrifter

    - Saknar bevisvärde – anektotiska och innehåller ofta symbolik som inte får övertolkas


Observera att det är skillnad på pseudovetenskap, där villfarelsen är avsiktlig, och dålig vetenskap, som i bästa fall kan vara ett oavsiktligt misstag.

Skepticism/källkritik i webbsökningar

Det finns t.ex. på internet väldigt mycket bra information, men också mycket skräp och pseudovetenskap. Några tips för att bedöma information:


  • Leta efter oberoende bekräftelse av fakta
  • Var öppen för olika åsikter, men använd bara bevis som kan bekräftas
  • Studera olika hypoteser – skaffa dig inte en favoritteori som utesluter alla andra
  • Kvantifiera där det är möjligt - "vad som är vagt och kvalitativt är öppet till många förklaringar"
  • Använd "Occam’s Razor": börja med den enklaste förklaringen
  • Är ett uttalande öppet för experimentell bekräftelse? Om inte, kan det vara intressant att diskutera, men validiteten kan aldrig bekräftas
  • Är urspungspersonen knuten till en reputabel institution? Reputabel institution är dock varken nödvändigt eller tillräckligt villkor för tillförlitlighet! (Einstein var anställd vid en patentbyrå i Bern när han pubicerade sina första papper.)
  • Ligger sidan under en officiell website från en respektabel institution (renomerat universitet eller forskningsinstitution)
  • Är sidan från en publikation i en renomerad tidskrift så kan man oftast lita på uppgifterna
  • Icke granskade open access system (t.ex. arXiv, länk 2) kan innehålla allt från nobelpris-forskning till pseudovetenskap, så här gäller det att vara försiktig
  • Är ursprungspersonen expert på ämnet? Nobelpristagare och professorer missbrukar tyvärr ibland sin status för uttalanden i helt andra ämnen!
  • Var misstänksam om författaren utan mycket starka argument angriper grundläggande, sedan länge etablerad vetenskap


Uppslagsverk på webben

Wikipedia är ett flerspråkigt webbaserat uppslagsverk med i huvudsak fritt och öppet innehåll som utvecklas av sina användare (ofta benämnda wikipedianer).

Wikipedia har mer och mer blivit en standardkälla för information. De svenska versionen är ganska begränsad, och jag rekommenderar den bara för svenska förhållanden. Den engelska versionen är emellertid mycket omfattande. Wikipedia kritiseras ibland för att den skulle vara otillförlitlig eftersom vem som helst kan skriva artiklar. Det är ju precis detta som är Wikipedias styrka! Om något fel kommer in så rättas den snabbt av någon annan. Om det är oenighet i ett ämne så markeras detta ofta tydligt i artikeln. Wikipedia innehåller faktiskt inte mycket fler fel och saknad information än Nationalencyklopedin (NE) enligt en undersökning man gjort på Sveriges Radio. Wikipedia är naturligtvis inte den slutliga källan när det gäller komlicerade begrepp, men den är en utmärkt utgångspunkt.

Nationalencyklopedin (NE, Nationalencyklopedin) har fördelen att artiklarna skrivits av experter på det aktuella området, så kvalitén är hög och jämn. Nackdelen är att nyheter kommer in mycket långsammare än i Wikipedia där "nördar" (positivt menat) bevakar allt som händer. Wikipedias styrka är initierade artiklar även i ganska udda ämnen. Den pedagogiska nivån är emellertid mycket varierande. Avvikelser från Wikipedias principer markeras emellertid oftast tydligt.

En annan fördel med Wikipedia jämfört med NE är att alla viktiga fakta skall ha en referens till en originalkälla. Om detta inte är fallet för artiklar med lägre kvalité så signaleras detta oftast längst upp på sidan.

En stor fördel med Wikipedia är att många bilder är helt fria under Wikimedia Commons.

Pseudovetenskap mm

Ett vanligt pseudovetenskapligt trick är att man påstår något som inte har något stöd i teori eller experiment, men som å andra sidan inte kan motbevisas. Detta kallas efter filosofen Bertrand Russell för Russells tekanna.

Russells tekanna eller den himmelska tekannan är en analogi av filosofen Bertrand Russell. Analogin är ett argument mot idén att det är en skeptikers uppgift att motbevisa religiösa dogmer, snarare än den troendes uppgift att bevisa dem, se Russells_tekanna.


Länk 1 innehåller artiklar om och exempel på pseudovetenskap. Nature of Science är en utmärkt interaktiv site om vetenskaplig metod. James Randi Educational Foundation är hemsidan för en av de mest kända förkämparna för vetenskaplig metod och mot pseudovetenskap. Wikipedia-artiklarna Vetenskap och Pseudovetenskap är mycket bra. Se även Russell's_teapot, Science, Scientific_method, Pathological_science och Pseudoscience.

Referenser: bland annat Carl Sagan: Demon-Hunted World,
Robert L. Park: Voodoo Science: The Road from Foolishness to Fraud och Bennett, Shostak, Jakosky: Life in the Universe.

Se även nedanstående figur (Image credit: Hemant Mehta of the Friendly Atheist blog).

Question Image

Länkar: http://fragelada.fysik.org/links/search.asp?keyword=pseudovetenskap  |  http://arxiv.org/
/Peter E 2005-11-14


Vad händer med den värmeenergi som kommer från tex en hårtork

Gymnasium: Energi - energikällor, kärnenergi [14319]
Fråga:
Hej!
Jag undrar vad som händer med den värmeenergi som kommer från tex en hårtork. Värmer den upp vår jord eller vad blir det med den eftersom värme är den lägsta energiformen?
Och en lite fråga till: Hur räknar man ut antal hästkrafter som en bil har?
/Sarah  A,  Lillerudsgymnasiet,  Vålberg 2005-11-30
Svar:
Sarah! Intressant fråga som är mer komplex än vad man kan tro! Det beror på var elektriciteten som driver hårtorken kommer ifrån.

Om den kommer t.ex. från vattenkraft, vindkraft eller solkraft så är det bara en omfördeling av värmeenergin. Den värme som skulle ha utvecklats vid kraftverket (och som kraftverket "stal") utvecklas i ditt sovrum i stället. Under största delen av året behöver vi i Sverige ändå värma upp våra bostäder, så värmeenergin är inte bortslösad.

Om el-energin kommer från kärnkraftverk är det lite annorlunda. Kärnkraftverken tar energi från urankärnorna och i slutändan blir all denna energi till värme. Utan kärnkraftverk hade urankärnorna bevarats och denna energi alltså stannat där. Energiutvecklingen från alla kärnkraftverk är emellertid mycket liten jämförd med den energi som kommer från solen. Låt oss se om detta är sant:

Enligt Power Reactor Information System är det totala elekriska effekten för alla världens kärnkraftevert 369 GW(e). Med en verkningsgrad på c:a 30% blir detta ungefär 1000 GW eller 1 TW (terawatt=1012 W) termisk effekt.

Instrålningen av energi per sekund och m2 från solen ges av solarkonstanten = 1368 W (se solarkonstanten).

Jordens yta (genomskärningsytan) är

pR2 = p(6.38106)2 = 1281012 m2

Effekten från solstålningen blir då

1281012 1368 = 1750001012 W = 175000 TW.

Detta är ganska mycket större är de 1 TW från kärnkraften, så uppvämningen av jorden pga kärnkraft är säkert försumbar - det finns andra viktigare skäl till att jordens temperatur antagligen ökar lite.

Se vidare
energikällor, kärnenergi, vattenkraft, växthuseffekten. Se även fråga 14321.

Man bestämmer normalt effekten hos en bilmotor med en motor-dynamometer som är en sorts kalibrerad broms, se länk 1 för detaljer.
Länkar: http://www.pumaracing.co.uk/power3.htm
/Peter E 2005-11-30


Hur avbryter man kedjereaktionen i ett kärnkraftverk?

Grundskola_7-9: Energi - kärnenergi [14320]
Fråga:
hej! jag undrar hur man avbryter kedjereaktionen i ett kärnkraftverk? vad använder man och hur kontroller man det som stänger av den?
/siri  l,  asken,  strängnäs 2005-11-30
Svar:
Hej Siri! Ett kärnkraftverk i normaldrift körs med en exakt balans mellan producerade neutroner (i fissionsprocessen) och konsumerade neutroner (de som orsakar fission, bara fångas in i bränslet eller moderatorn, försvinner ut från reaktorhärden mm). En liten ökning i borttagna neutroner gör att reaktorn går ner i effekt för att slutligen stanna. Denna ökning i borttagna neutroner åstadkoms med sk styrstavar.

Styrstavarna går i mellanrummet mellan bränslestavarna rakt igenom reaktorn och innehåller ett ämne som absorberar neutroner, vanligtvis bor eller kadmium. Styrstavarna körs normalt ut och in med elmotorer, men man kan även använda hydrauldon för snabbstopp.

En liten men viktig detalj som är mycket viktig för att kunna driva ett kärnkraftverk på ett säkert sätt är sk fördröjda neutroner. C:a 1% av de neutroner som produceras har föregåtts av ett beta-sönderfall. Det betyder att dessa neutroner är fördröjda med några sekunder (moderkärnans halveringstid) innan de kommer ut och kan inducera kärnklyvningar. Om inte denna 1% av fördröjda neutroner hade funnits, så hade tidskonstanten för reglering blivit mycket kortare, och det hade varit omöjligt att styra reaktorn med mekaniska anordningar.

En annan viktig aspekt på reaktorkonstruktionen är moderatorn som effektivt bromsar upp neutronerna. I de typer av reaktorer vi har i Sverige används vatten som moderator (förutom att det fungerar som kylmedium för reaktorhärden - det transporterar värme från reaktorn till turbinen). De neutroner som kommer ut i fissionsprocessen har ganska hög energi (1-10 MeV). Sannolikheten för fission av U-235 är emellertid mycket låg för dessa höga neutronenergier, se nedanstående figur. Vid låga neutronenergier är emellertid som synes sannolikheten mycket större. För att få ett bra utbyte av fissionsreaktioner är det alltså effektivt att snabbt få ner neutronenergin till låga värden. Detta sker genom att neutronerna kolliderar med vätekärnorna som finns i vattnet.

Se vidare länk 1, länk 2, Nuclear_power, Nuclear_reactor_technology och Light_water_reactor, de tre senare mycket omfattande och på engelska.

Question Image

Länkar: http://www.e.kth.se/~e98_bpo/index.html  |  http://sv.wikipedia.org/wiki/K%C3%A4rnreaktor
/Peter E 2005-12-01


Sida 17 av 20

Föregående | Nästa

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

** Frågelådan är stängd för nya frågor tills vidare **
Länkar till externa sidor kan inte garanteras bibehålla informationen som fanns vid tillfället när frågan besvarades.

Creative Commons License

Denna sida från NRCF är licensierad under Creative Commons: Erkännande-Ickekommersiell-Inga bearbetningar