Vill du ha ett snabbt svar - sök i databasen:

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

24 frågor / svar hittades

Att öppna glasburkar med metallock

Fråga:
Jag upplever att glasburkar med metallock går lättare att öppna om man spolar varmt vatten på. Vad är det som händer? Varför blir det så? Har det med att göra att metallocket sväller av värmen fortare än vad glaset gör och på så sätt lossnar det? Eller har det nåt med vakuum att göra att det upplöses när varmt vatten spolas på?
/Malin  D,  Lärarhögskolan,  Stockholm 2008-02-22
Svar:
Malin! Du har bra idéer om orsaken. Framför allt två effekter kan spela in. Den första effekten om man värmer burken snabbt och den andra om man värmer den länge.

Termisk expansion (att material utvidgar sig när temperaturen blir högre): Metaller utvidgar sig mer än glas, se tabell i artikeln Coefficient_of_thermal_expansion. Lägg märke till att den öppna delen av locket expanderar som om den vore gjord av metallen. Utvidgningskoefficienten för hål är alltså lika med den för omgivningen, se länk 1 (stycket "Thermal expansion : expanding holes") för bevis. Dessutom leder metall värme bra, medan glas leder värme dåligt. Locket blir alltså varmare än glaset, vilket förhöjer effekten att locket expanderar relativt burken. Det blir då lättare att lossa locket dels för att kontakten med burken blir mindre, och dels för att eventuella tryckskillnader kan utjämnas (se nedan).

Att ett hål expanderar som omgivningen används i mekanisk industri för något som kallas krympförband (Shrink-fitting).

Undertryck: Locket sätts på vid en förhöjd temperatur. För en ideal gas gäller den ideala gaslagen (se fråga [15294] eller Gas_laws) att

pV = nRT

Vid konstant volym V och konstant mängd gas (n) är tryckändringen Dp proportionellt mot temperaturändringen DT. Vi får

Dp/p = DT/T

Om omgivningstemperaturen är 20oC = 293 K och temperaturen när locket sattes på 100oC får vi

Dp = p80/293 = 1.01310580/293 = 28000 N/m2 (pascal, Pa)

Om locket har en radie på 3 cm är ytan 32p, dvs c:a 30 cm2. Totala kraften på locket blir då

0.003028000 = 84 N. Detta motsvarar kraften som krävs för att lyfta c:a 8 kg, alltså en ganska stor kraft.

Om man värmer upp burken genom att hålla den länge under varmvattenskranen reduceras tryckskillnaden och därmed kraften. Observera alltså att tricket att hålla burken under varmvattenkranen hjälper för båda förklaringarna ovan!

Mikroskopisk förståelse av gaslagen:

Man kan förstå varför en viss mängd luft ger lägre tryck vid lägre temperatur. Temperatur är ett mått på molekylernas medelhastighet - om vi har låg temperatur så rör sig molekylerna långsamt. De kommer därför att kollidera med väggarna mindre ofta och mindre våldsamt än om temperaturen är hög. Det är just molekylernas kollektiva effekt på väggarna som makroskopiskt (i vår värld, till skillnad från molekylernas mikroskopiska värld) uppfattas som tryck.
Länkar: http://physics.bu.edu/~duffy/py105/Temperature.html
/Peter E 2008-02-22


När och hur och vem kom på/skapade platt tvn?

Grundskola_7-9: Blandat - bildskärmar, glödlampa, TV [16280]
Fråga:
När och hur och vem kom på/skapade platt tvn?
/Lennart  L,  Tunaberg,  uppland 2009-05-29
Svar:
Lennart! Det fungerar inte så längre att en person plötsligt kommer på någonting, startar tillverkning och tjänar massor med pengar! Alfred Nobel (han med dynamiten) är ett exempel på en uppfinning som gav omedelbart genomslag, men det var på 1800-talet då den tekniska utvecklingen började sätta fart.

Glödlampan, en av de klassiska uppfinningarna, uppfanns faktiskt inte av Edison, han bara förbättrade grödtråden och såg till att man fick en användbar produkt, se Light_Bulb och länk 1. Den förra är för övrigt en bra beskrivning av processen från idé till användbar produkt. Nedan är en bild på Edisons glödlampa. Även den svenska Wikipedia-artikeln är bra: Glödlampa. Se även glödlampa.

Både när det gäller teknikutveckling och i naturvetenskapen sker framstegen i allmänhet i små steg. Man bygger alltså oftast på kunskap som har tagits fram under lång tid och av flera personer/organisationer. Det kan vara ett mycket långvarigt utvecklingsarbete innan en produkt baserad på en upptäckt kommer ut på marknaden.

Ett ovanligt exempel på motsatsen är jättemagnetresonans (nobelpris 2007, se länk 2). I detta fallet tog det bara några få år (från upptäckten 1988 till mitten av 1990-talet) innan upptäckten resulterade i kompakta hårddiskar med hög kapacitet.

Det räcker inte med att upptäcka en användbar effekt för att det skall bli en spridd produkt. Det måste först finnas (eller skapas) en marknad. Tillverkningsprocessen måste göras billig och tillåta massproduktion. Det är massproduktionen som tillåter priset att bli lågt så att produkten får ett stort genomslag. Du har säker sett att priset på platta skärmar har sjunkit radikalt de senaste åren.

Den första plattskärmen var Flat_screen_pocket_TV från Sinclair. Den byggde på samma princip som en tjock-TV men med en kompakt elektronkanon monterad åt sidan. Det blev en kollosal flopp eftersom man redan hade uppfunnit flytande kristaller (LCD, liquid crystal display).

LCDn var från början mycket dyr och användes först i små svart-vita dispayer t.ex. klockor och portabla datorer med pyttesmå skärmar. LCD kan nu göras stora, i färg och dessutom billiga.

Se Liquid_crystal_display, Flytande_kristallskärm för mer om LCD och Plasma_display, Plasmaskärm för information om plasmaskärmen som är den nuvarande konkurrenten till LCD.

Det finns flera nya tekniker för att göra bildskärmar för olika behov, se Comparison_of_display_technology. En svaghet med både LCD och plasmaskärm är att de med sin inre belysning fungerar dåligt i starkt ljus. Det finns projekt att utveckla skärmar där bilden belyses av omgivningsljuset, t.ex. Elektroniskt papper (Electronic_paper). En intressant tillämpning av detta skulle vara elektroniska böcker som fortfarande är ganska klumpiga och har begränsat användningsområde.

Question Image

Länkar: http://energy.gov/articles/history-light-bulb  |  http://nobelprize.org/nobel_prizes/physics/laureates/2007/info_sv.pdf
/Peter E 2009-05-29


Om mörka nebulosor

Fråga:
Hej! Jag ska hålla ett kort föredrag om mörka nebulosor och efter lite sökande på internet så läste jag om att det kan finnas aktiva stjärnor inuti mörka nebulosor. Hur skulle det fungera och vad händer med all ljusenegi eftersom energi inte kan sluta att upphöra. Är det ens möjligt att det skulle kunna finnas en aktiv stjärna i en sådan nebulosa?

Jag har en annan fråga angående mörka nebulosor också. Mörka nebulosor reflekterar inte ljus så vad händer med ljuset, absorberar dem sub-mickro-meter stora dammpartiklarna ljuset eller vad händer?
/Jack  C,  RÃ¥lambshovsskolan,  Stockholm 2015-05-26
Svar:
En mörk nebulosa är en nebulosa som är så tät att den döljer ljuset från en bakomliggande emissions- eller reflektionsnebulosa (exempel: Hästhuvudnebulosan, bilden nedan), eller blockerar ljuset från bakomliggande stjärnor.

Du har helt rätt i att det till synes är ett problem med vart strålningsenergin tar vägen. Gas- och stoftmoln är "barnkammare" i vilka stjärnor bildas. Så länge molnet finns kvar kan man inte se de bildade stjärnorna eftersom strålningen absorberas av nebulosan. Nebulosan är alltså inte transparent för synligt ljus.

Den absorberade energin värmer upp gasen/stoftet, och energin sänds ut i form av mikrovågsstrålning. Som visas i länk 1 är nebulosor åtminstone delvis transparenta för mikrovågor.

Stjärnljuset värmer alltså stoftet och med höjd temperatur ökar mikrovågsstrålningens energi (våglängden blir mindre) tills ett jämviktstillstånd uppstår. En del av mikrovågsstrålningen vi kan observera kommer från molekyler.

Strålningstrycket från stjärnan kommer även att blåsa bort gas och stoft, så att stjärnan kommer att omges av en transparent "bubbla". Nebulosor med stjärnbildning sprids relativt snabbt ut och försvinner.

Se även länk 2.

Question Image

Länkar: https://amazing-space.stsci.edu/resources/print/lithos/horsehead_litho.pdf  |  http://abyss.uoregon.edu/~js/glossary/dark_nebula.html
/Peter E 2015-05-26


Hur har solens utstrålning varierat sedan den bildades?

Fråga:
Hej!
Solen blir sakta varmare, så klimatet på jorden blir väl allt hetare sett på årmiljoners sikt, men när i sin historia var solen som svalast, efter det att den blev en lysande sol? (Istiderna på jorden sägs inte ha med solen att göra utan med jordbanans form.)
/Thomas  Ã,  Knivsta 2017-01-19
Svar:
Figuren nedan från Solar_luminosity visar solens luminositet (röd kurva) under 12 miljarder år. Vi ser att ljusstyrkan var minimum c:a 300 miljoner år efter det att solen bildades. Sedan dess har ljusstyrkan stadigt ökat med c:a 30%.

Istiderna har tidskonstant av storleksordningen 100000 år, se fråga [830].

På kort sikt (några tusen år) är alltså ändringar i medeltemperaturen hos jorden inte orsakat av ändringar i solarkonstanten (fråga [13917] och figuren i fråga [20532]) genom ändrad luminositet eller ändringar i jordens rörelse, se fråga [830]. Den helt överskuggande faktorn är förekomsten av växthusgaser, se fråga [12668].

Lägg märke till den stora ökningen i luminositet från åldern 10 miljarder år. Den beror på att bränslet i centrum (väte) börjar ta slut. Solens kärna kontraherar och yttre delarna expanderar. Större radie (blå kurva) betyder högre luminositet. Vid 10 miljarder år börjar yttemperaturen (grön kurva) minska, och solen börjar utvecklas till en röd jättestjärna.

Question Image

Länkar: https://en.wikipedia.org/wiki/Paleoclimatology#/media/File:All_palaeotemps.png
/Peter E 2017-01-19


Sida 3 av 3

Föregående |

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

** Frågelådan är stängd för nya frågor tills vidare **
Länkar till externa sidor kan inte garanteras bibehålla informationen som fanns vid tillfället när frågan besvarades.

Creative Commons License

Denna sida frÃ¥n NRCF är licensierad under Creative Commons: Erkännande-Ickekommersiell-Inga bearbetningar