Vill du ha ett snabbt svar - sök i databasen:

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

« Föregående fråga | Nästa fråga »

Fritt fall och satellitbana.

Lärarutbildning: Ljud-Ljus-Vågor - fallrörelse, satellitbana [20054]
Fråga:
Hej
Jag stötte på en fråga liknande denna, som jag blev mycket nyfiken på och nu undrar hur man kan beräkna:

Om en astronaut på rymdpromenad strax utanför en rymdstation som ligger i månens omloppsbana (realistiskt eller ej...) tappar ett verktyg som sakta börjar dras mot jorden, hur lång tid tar det innan verktyget når jordytan? Rymdstationen befinner sig på motsatt sida jorden jämfört med månen. Bortse från luftmotstånd och från gravitation från andra himlakroppar än jorden.
/Urban  C,  LTU,  Luleå 2016-01-11
Svar:
Var det en kuggfråga? Det tar väldigt lång tid. Verktyget kommer att fortsätta i nästan exakt samma omloppsbana som rymdstationen eftersom den relativa hastigheten är mycket låg.

Verktyget skulle bli en del av det rymdskrot, se Rymdskrot, som finns speciellt i låga banor runt jorden. Rymdskrotet är en fara för satelliter som går i en avvikande bana eftersom kollisionshastigheten då kan bli flera km/s.

Verktyget kommer antagligen att efter en lång tid kollidera med månen, eftersom det är osannolikt att månen och verktyget har exakt samma omloppstid.

Om man föreställer sig att verktyget kastas i bakåtriktningen så att banrörelsen upphörde så måste detta ske med hastigheten

2pR/P = 2p384106/(27.3360024) = 1023 m/s = 1.023 km/s.

Verktyget skulle då falla rakt ner på jorden. Hur lång tid skulle detta ta? Man kan räkna ut detta genom integration, men i artikeln Free-fall_time finns en härledning där man utnyttjar Keplers tredje lag, se fråga [12644].

Falltiden (till jordens centrum -- ännu ett orealistiskt antagande) blir då

tff = pR3/2/(2(2G(M+m))1/2) =

p(384106)3/2/(8(6.6710-11)(5.971024))1/2 =

419000 s = 419000/(360024) dygn = 4.8 dygn.

Vi har bortsett från verktygets massa m i förhållande till jordens massa M.

(Samma uttryck fås även från formeln i Free_fallInverse-square_law_gravitational_field)

Resultatet är rimligt med tanke på att det tog Apollo-kapslarna ungefär 3 dygn att färdas tillbaka till jorden från månen.

Astronomiska sifferuppgifter är från Planetary Fact Sheets.
/Peter E 2016-01-12


« Föregående fråga | Nästa fråga »

| Senaste Veckans fråga | Alla Veckans frågor | ämnen |

** Frågelådan är stängd för nya frågor tills vidare **
Länkar till externa sidor kan inte garanteras bibehålla informationen som fanns vid tillfället när frågan besvarades.

Creative Commons License

Denna sida från NRCF är licensierad under Creative Commons: Erkännande-Ickekommersiell-Inga bearbetningar