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1 Introduction

The periodic rise and fall of the sea surface has fascinated man from the earliest
ages. Obviously people must early have noticed the connection between high and
low water and the position of the Moon and the Sun. Due to the regularity of the
phenomena it became closely associated with the flow of time as the very name
tides indicates.

When Newton (1697) first formulated the theory of gravitation he also discov-
ered the nature of the tide generating force. Newton’s equilibrium theory of tides
explained the observed dominant semidiurnal periodicity of ocean tides. Up to
then it had been a mystery that high water occurs both with Moon overhead and
also about 12 hours later when the Moon is on the other side of the earth.Today
Newton’s equilibrium theory (see section 2) provides the correct tide generat-
ing force to which the oceans respond hydrodynamically in a rather complicated
fashion. Although Newton discovered the true astronomic nature of the tide, it
was Laplace (1775) who derived the first hydrodynamic equations of ocean tides.
Laplace tidal equations contain the tide generating force in terms of Newton’s
equilibrium tide as the forcing function.

Due to the complexity of Laplace tidal equations little progress was made in
solving these equations with realistic bottom topography and coastlines before
powerful computers became available. Since then Laplace’s equations have been
the basis of most modern tidal modelling.

The observation and mathematical treatments of tides were greatly advanced
by Lord Kelvin (Thomson, 1868) who introduced the method of harmonic anal-
ysis of tides. Both the astronomical forcing and the responding ocean tide are
represented as a series of harmonic tidal components each with its characteristic
frequency, determined from the regular almost periodic motion of the Moon and
the Sun. With this representation the time dependent ocean tides, can be ac-
curately described when a few time independent harmonic constants in terms of
amplitude and phases are known. The harmonic constants are characteristic for
every geographical point in the ocean and along the coasts. These constants may
be determined by harmonic analysis of observed time series of sea level changes,
with regular and sufficient frequent time sampling, or by solving the Laplace tidal
equations with realistic bottom topography and coastline configurations.

The tides particularly in coastal waters appear as a markly dominant part of
the ocean current variability. Since sea level changes and shifting currents asso-
ciated with the tides are of great importance for all maritime activity , coastal
engineering and management there is an enormous number of scientific publi-
cations devoted to the subject. The reviews by Cartwright (1977), Schwiderski
(1980, 1986), and Davies et. al. (1996) survey central parts of the literature. It is
impossible to cover this vast subject within the frame of this short lecture series.
We will therefore restrict to discuss in some detail, three important aspect, the
nature of the tide generating force, harmonic analysis of tide and some aspects of



tidal modelling. The presentation and examples in this lecture series rely heav-
ily on my own and my co-workers research on tides and may for this reason be
somewhat biased with respect to citations and references.

2 Tide generating force

The tide generating force is due to the gravitation of the Moon and the Sun. In
order to see this we shall consider a system of two spherical globes, the Earth and
the Moon, with masses m. and m; respectively. From the center of the Earth,
O, to a point P on the surface of the Earth we draw a distance vector 7 and the
corresponding distance vectors from O and P to the Moon are denoted Rand d
respectively (fig. 1). The length of these vectors are written r = |F|, R = |R| and
d = |cf| Since d and R are large compared to the radius of the Moon it can be
regarded as a point, M, and we obviously have

P+d=R (1)

N

Figure 1: The system Earth-Moon.

From the law of gravitation, the gravitational force on the Earth is

memy R
G — 2
7 R (2)
where (& is the gravitation constant. This force gives the center of the Earth an
acceleration. .
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In the same way the acceleration at the point P due to the gravitational pull of

the Moon is

d R
$OR

The difference between @, and @, is the tidal acceleration

(3)

— — —
a=da,—a,=Gmy

which corresponds to a tidal force pr unit mass. The vector @ is obviously con-

tained in the plane through O, P and M.
From the trigonometric cosines relation for the triangle OPM

d*> = R* 4+ r?* —2Rr cosb,,

where angle 8, is the angular zenit distance of the Moon. Hence
2

d:R\/l—Z%cosﬁm—l—ﬁ

r
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By expanding the square root in a series after the small parameter
glecting terms of order (%)

d= R {1— %cos@m} +0 (%)2

Again by series expansion
(1+ 3% cos 0,,)
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By using the latter relation together with eq. (1), the tidal acceleration, eq. (3),
can be written: .
. Gmr | R r
= g 3E cosb,, — ;] (4)
When introducing the acceleration of gravity at the Earth’s surface
Gm.
g = 12
the expression (4) can be written
3| R 7
a= gml (%) 3E cosf,, — ;] (5)




which shows that the tidal acceleration is a very small fraction of g. With pa-
rameters for the Earth—-Moon system, ;”—i = 0.012, & = 0.017 the fraction is of
the order 1075,

Equation (5) shows that @ is a sum of a vertical vector always pointing down-
ward along the vertical and a vector in the direction Rfor 6, < 5 and opposite R
when 7 < 6, < . Hence there will be a component of the acceleration directed
either towards the point A under the Moon or towards the corresponding point
B on the opposite side of the Earth (fig. 2).

to Moon

Figure 2: The direction of the tidal acceleration.

The vector d@ can be decomposed in a vertical component, a,, and a horizontal
component, ap. The latter being directed along the great circle arch APB. Since
R -7 = Rr cos#,, we have

- 3
a,,:&'.;:g:z (%) [3cos® 8, — 1] (6)
and since | R x 7| = Rrsinf,,
LT 3 my B
ap = |G X - =3 . <R> sin 20,, (7)

Here we can introduce the Moon’s horizontal parallax =, defined by

. r
sinm, = —

R

which is a commonly used parameter for the position of the Moon.



Imaging now that the Earth is covered by a thin sheet of water subject to the
tide generating force of the Moon. In order to be in equilibrium the surface of the
water will deform in order to set up an adverse pressure gradient counteracting
the horizontal tidal force. The equilibrium condition is

. 8ﬁm _§ my
graﬁm QQme

sin® 7, sin 26,, = 0

where 1, is the vertical displacement of the water. By integration we obtain

~ 3ml

Nm =~

= rsin® m,, cos 26, (8)
4m,

This expression shows that there will be high water under the Moon at A and
also the point B on the opposite side of the Earth. A zone of low water extends
around the globe with lowest water level for 0, = 7 as sketched in figure 3.
With the Moon moving in the equatorial plane there will, for each location
on the Earth, be high water when the Moon passes the meridian and another
equally high water about 12.4 hours later when the Moon is on the opposite side
of the Earth. Hence, the expression (8) explains nicely the semi-diurnal variation
of sea level. When the Moon has a northern or southern declination there will
be an asymmetry between two consecutive high waters. Therefore equation (8)
also explains the diurnal equality i.e. the difference in sea level rise between two
consecutive high water. The surface displacement given by eq. (8) is called the
equilibrium tide and in absence of continent it is thought to follow the Moon when

the earth rotates.

Table 1 Astronomical constants.

Mass of the Earth: m. 5.974-10** kg
Mass of the Sun: m, 1.991-10%° kg
Mass of the Moon: m;  7.347-10*2 kg

Mean distance Earth-Moon R 3.844-10°> km
Mean distance Earth-Sun R 1.496-10% km
Radius of the Earth r 6.370-10° km

The equilibrium tide is often used as a potential for the tide generating force.
The strength of the horizontal component of the tidal acceleration (7) and the
equilibrium tide (8) will vary with the position of the Moon and its distance
from the Earth. Maximum tidal acceleration will occur when the Moon is closest
to the Earth (perigee) and minimum acceleration when the Moon is in apogean
position. The variation the acceleration from minimum to maximum is about
15% of the mean value.
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Figure 3: The equilibrium tide

Here we have only established, to lowest order of accuracy, the expression for
the equilibrium tide due to the action of the Moon. A similar expression will
clearly also appear from the action of the Sun

-~ 3ms . 4
., = ——7rsin
s =

. s COs 20, (9)
where m; and 7, denote the mass and the horizontal parallax of the Sun respec-
tively, and 6y is zenit distance of the Sun. Although the mass of the Sun is much
larger than the mass of the Moon the parallax for the Sun is much less than the
parallax of the Moon. The equilibrium tide due to the Sun is therefore about
half of the Moon’s. The combined effect of the Moon and the Sun leads to an
expression for the total equilibrium tide

0= 1w+ 1s (10)

With the astronomical constants in table 1 we find |7,,| =0.27 m and |7},,| =0.12 m
and the total amplitude of the equilibrium tide will be 0.39 m. This is considerable
less then the ocean tide in most places and we will later in section, 4, see how the
equilibrium tide is amplified in the ocean. Since the position of the Moon and
the Sun can be calculated with a high degree of accuracy the parallax and zenit
distances is known as highly accurate functions of time. Hence we can calculate
the spatial and temporal variation of the equilibrium tide or equivalently the tide
generating force.



3 Harmonic decomposition of the tide generating
force

The tide generating force, or equivalently the equilibrium tide, can be decom-
posed into a series of harmonic components or partial tides. Each component or
constituent has a amplitude determined from the equilibrium tide and a period
corresponding to periods for the orbital motion of the Moon, Farth and the Sun.
The major constituents have either period around 12 hours or 24 hours and are
therefore classified as semi-diurnal or diurnal species respectively. It has been
shown that at a point with geographical coordinates 6., the equilibrium tide
can be written as sum of cosines function.

7= 3 5(0) cos(wit + x: + i) (11)

where 77 is the amplitude, w; is the frequency, y; is an astronomical argument
and v; an index equal 1 for diurnal components and 2 for semi-diurnal. The
geographical coordinates are here colatitude # and longitude ¢

The astronomical argument can be expressed in terms of mean longitude of the
Sun, Moon and lunar perigee usually relative to Greenwich midnight . Formulas
for calculating the astronomical arguments are given for example by Schwiderski

(1980, 1986).

Table 2 List of major tidal harmonic components.

Symbol | Period (T) | Frequency (w) Description
hours 107* rad/s
M, 12.42 1.40519 principal lunar, semidiurnal
So 12.00 1.45444 principal solar, semidiurnal
N, 12.66 1.37880 elliptical lunar, semidiurnal
K, 11.97 1.45842 declinational luni-solar, semidiurnal
Ky 23.93 0.72921 declinational luni-solar, diurnal
0O, 25.82 0.67598 principal lunar, diurnal
Sa year meteorological, annual

Six of the major astronomical tidal components are listed in table 1 with their
symbol, period, and frequency. Here the component M, represents the tidal force
of an imaginary Moon circulating around the Earth in the equator plane with
the mean speed of the real Moon. Similarly the component S, corresponds to a
Sun circulating in the equator plane. The effect of the declination changes are
accounted for by the diurnal component K7 and the ellipticity of the Moon’s orbit
by the component N,. Similar, albeit a less intuitive, interpretation can be given
to the other astronomical components.



4 Ocean response

The ocean response is basically a linear process which means that the sea level
changes at a given location can be expressed as a corresponding sum of harmonic
components with the same prevailing frequencies as appeared in the decompo-
sition of the equilibrium tide. (11). This is a common property of all linear
harmonic oscillators, a well-known process also from other branches of physics.
Hence sea level at a location with colatitude § and east longitude ¢ can be written

n(0, et Z H;(0, ) cos[wit + xi — 6;(0, ¢)] (12)

The amplitude H;(6, ) and Greenwich phase 6;(6, @) are usually referred to as
the harmonic constants for the component ¢ and ¢ is Greenwich (GMT) time. The
amplitude and the phase for each component depend in a very complicated way
on the dynamical properties of the ocean basin i.e. depth, shape, size, dissipation
as well as the amplitude and phase of the corresponding partial equilibrium tide.
If for example one of the forcing frequency in the sum (11) happens to coincide
with an eigen frequency of the basin oscillations large amplitude tides may occur.

Amplification of the tide may also occur when the ocean tide propagates over
the shelf into shallow water, and when irregularities in coastal topography acts
as obstacles to the tide. As we already have seen it follows from eq. 10 that
the amplitude of the equilibrium tide is of order 0.4 m. Since in many places
the sea level changes of the tides are several meters it is clear that significant
amplification occurs in many ocean basins. We shall discuss the variation of tidal
amplitudes and phases on basin scale in section 10.

5 Harmonic constants and tidal predictions

The harmonic constants for each tidal constituent at a certain location can be
determined by harmonic analysis of observed time series of surface elevation from
that particular location (see section 6) or by numerical tidal models for the sur-
rounding basin (see section 9). As an example we shall consider the tides at
Longyearbyen.

From long series of records of sea level the harmonic constants at Longyear-
byen are determined by Polarinstituttet, Tromsg, Norway and published in the
official tables of tides from Norges Sjgkartverk (1997). With this set of constants
it is easy to demonstrate the characteristics of tidal oscillations at Longyearbyen
(figure 4). The calculations are done for October 2002 on basis of eq. 12 with the
constants given in table 3. The astronomical arguments for the various compo-
nents are determined by a separate program which calculates the position of the
Moon and the Sun (Schwiderski, 1986). Figure 4 shows clearly the significance
of the various components. With M only (a) the sea level varies regularly as a

10



harmonic oscillation with amplitude 52.2 ¢m and period 12.42 hours. With 5,
added (b) the beat of spring and neap tides occurs. Here the highest spring tide
occurs on the 8th October, and on 23rd October about 1-2 days after new and
full Moon respectively with neap tide around the 1th, 16th and the 30st October.
The delay of the spring tide relative to the time for new and full Moon, here
about 2 days, is called the age of the tide which is determined in a complicated
way by the dissipation of tidal energy in the basin.

Table 3 Harmonic constants for sea level at Longyearbyen.

Component | H;(em) | &;(deg)
M, 52.2 356.0
S 19.9 40.0
Ny 10.0 329.6
Ky 5.7 38.0
Ky 10.2 221.0
O1 3.1 77.0

The amplitude of the neap tide is 32.3 cm, i.e. the difference between the
amplitude of the M; and the S, constituents, while the amplitude of the spring
tide is 72.1 cm i.e. the sum of the amplitudes of M, and S;. With N; added to 55
and M3 (c) an asymmetry between the first and the second spring tides appears.
The spring tide around 8th October is considerably larger than the spring tide
around 23th October. This is due to the variation of the distance between the
Moon and the Earth here with minimum distance (perigee) around the time of
new moon and maximum distance (apogee) around the time of full moon. The
difference in height for the two neap tides is barely noticeable. Finally (d) where
the diurnal component K7 is added shows clearly the diurnal inequality with a
noticeable difference in amplitude for two consecutive high or low water.

The tides at Longyearbyen is dominated by the semi-diurnal constituents
M; and S; which lead to the characteristic neap-spring cycles. A similar tidal
structure is common all over the Norwegian and the Barents Seas. In some other
oceans, for example the Pacific coast of USA, the diurnal component is large
leading to a more complex tidal structure.

With the same technique as described above the sea level changes at Longyear-
byen are calculated for a period in January 1993 and compared with observations
(figure 5). We see that the predictions are in very good agreement with observa-
tions, but there is some systematic differences for example from the 3th to the

5th day.
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Figure 4: Figure 1: Tides at Longyearbyen 1-31 October 2002. a) Only My, b)
M2+8Ss, ¢) Ma+S2+Ny, d) Ma+S2+Ny+Ky. New Moon 6 Oct., Full Moon 21 Oct.
Lunar perigee 6 Oct. and apogee 20 Oct. Day starts at midnight UTC (GMT).
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Figure 5: Tides at Longyearbyen 1-8 January 1993. Full drawn line; predicted
tide with the six components listed in table 2. Circles; observations with 1 hour

sampling interval.

During this period the observations are generally lower then the predictions
an effect most likely due to the influence of atmospheric forces i.e. wind stress and
pressure. The observational data are provided by Mr. T. Eiken, Polarinstituttet,
Oslo.

Tidal predictions for coastal and offshore stations in Norwegian waters are
available in ref. [21] and on the internet site http://www.math.uio.no/tidepred/.

6 Harmonic analysis of tidal records

In order to provide an understanding of the basic principles of harmonic analysis
we shall here give a simplified description of the method. The method as it is
formulated here is closely related to the method of least square error, frequently
used in statistics and analysis of measurement errors in experimental physics.
Assume that at a station the height of sea level, &, relative a fixed point has been
recorded at regular time intervals At over a time span 0 < ¢ < ¢,

h={h}, k=1,23 .. kna
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where t,, = (kmax — 1)At. For tidal records the sampling interval, At¢, normally
is from 10 minutes to 1 hour. The mean height of sea level is

1 kmax
S

1

h =

kmax
and the displacement of the sea level relative to the mean value
n={m}="{h—n}, k=1,23.. kna

We may for simplicity assume that the sampling is sufficient dense so that we
may regard n as a continuous function of time

n=mn(t) (13)

We shall now, again for simplicity, assume that the variation of n with time is
dominated by one distinct tidal frequency with period 7; and that the length of
the record is long enough to contain several oscillations, i.e. ¢,, > T;. Let try to
approximate the function 7(¢) by a harmonic component

ns(t) = H; cos(w;it — k;)

where k; contain both the astronomical argument and the phase of the compo-
nent. This expression can be rewritten in the form

ns(t) = Ajcosw;t + B; sinw;t

where A; = H,; cos k; and B; = H, sin k;. The integrated square difference between
n(t) and n,(t) is
tm
1= [t =m0
0

Now the difference, I, is a function of A; and B; and we may determine these co-
efficients so that [ attains a minimum value. The conditions for this is obviously.

al al

or =% g =0

which leads to

/[U(t) —ns(t)] coswit =0

/[77(75) — ns(1)] sinwit = 0
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By substituting for ns(¢) in the integrals we find after rearrangements

t fm trm
/n(t) cosw;t dt — A; / cos?w;t dt — B; / cosw;tsinw;tdt =0
0 0 0
and
6 tm trm
/n(t) sinw;t dt — A; / cosw;tsinw;t dt — B; / sinfwtdt =0
0 0 0

By choosing the length of the record as a multiple of the period ¢,, = mT; the
integrals over products of sines and cosines vanish and

tm tm
tm
/cos2 witdt = /sin2 witdt = 5
0 0
Hence
tm
2
A, = o n(t) cosw;t dt
"0
tm
2 )
B, = o n(t)sinw;tdt.
"0

With the sampled data set {n;} and M = t,,/At where M + 1 < kpax, the

integrals reduce to sums

k=M+1
2 a(k — 1)At
A = SdiUBmEb
; e ( T; )

kE=M+1
m(k —1)Al
B, = E -
k=1 " Sm< T )

Hence we can determine the amplitude H; and phase k; of the harmonic compo-
nent.

2 2 A;

Hi: AZ —I-BZ, tanlii:—

B;

The theory given here can easily be extended to incorporate more components.

In case of two dominant components with nearly the same period, as for example

M; and S the record must be long enough to contain at least one spring neap
cycle.

In order to demonstrate the usefulness of the simplified approach we have

estimated the amplitudes of My and S, for Longyearbyen from a record of sea
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level from January 1993. For M, where T' =12.42 hours we use m =50 and M
=621 which leads to H =53.1 cm and for S, where T' =12.00 hours we use m = 60
and M =720 which leads to H =19.4 cm. Both amplitudes are in good agreement
with the corresponding values in table 2 which are calculated by more accurate

methods (Foreman 1977).

7 Laplace’s tidal equation

The wave length, A, of the tidal wave is typical of the order 1000 km i.e. much
larger than the water depth. Hence a long wave approximation applies with a
hydrostatic pressure distribution in the vertical water column:

p=p.+pg(n—=z) (14)

Here p, is the atmospheric pressure, p is the mean density of sea water, n is the
vertical displacement of the sea surface and z-axis pointing upward with z = 0
at the mean sea level. Hence the horizontal pressure gradient becomes

VP=pIN/ "N

which shows that the horizontal current associated with the wave motion is es-
sentially depth independent. We denote the horizontal current vector by

U= {U97 Ukp}

with components directed along the local colatitude (south) and the local longi-
tude (east) respectively. Since the period of the wave motion is of the order of
the period of the earth rotation the horizontal components of the Coriolis force,
which can be written
— fE X U

will be of importance. Here f = 2 cos f is the Coriolis parameter with ) the
angular velocity of the Earth and 6 the colatitude. k is a unit vector pointing
upward in vertical direction. Except in some coastal areas the tidal currents are
small and the amplitude of the tidal wave, i.e. the height of high water, is much
less than the water depth. Hence the flow is essentially linear and the equation
of motion for the horizontal tidal flow can be written

ov —_— CD

O IR xT= =g ()~ als (15)
Here the gradient of the equilibrium tide represent the tide generating force. We
have also introduce quadratic bottom friction proportional to v? and direction
opposite to the current vector. The bottom friction coefficient is denoted ¢p
which typically is of order ¢p = 0.003. The dependence of the bottom friction

16



term on water depth ensure that bottom friction is more important in shallow
water than in deep water. The equation of continuity can be written

R (16)

which simply expresses that net volume flux into a water column lead to a corre-
sponding displacement of sea level. The horizontal gradient operator in eq (15)
and the horizontal divergence operator in eq. (16) are expressed in spherical
coordinates 6, ¢.

Oy 1 on
V= rdf’ rsin b dyp (17)
v - (Uh) = ! ugh + g(vgh sin 6) (18)

rsinf | dy 00

The set of equations (15-16) constitutes Laplace’s tidal equations (LTE) and are
essentially the shallow water equations for long wave motion in a thin fluid layer
on a spherical globe. The boundary conditions for LTE are vanishing current
perpendicular to the coast

v-n=o0 on I.

where 77 is unit vector normal to the coastline, I'..

8 Free wave solution to LTE. Kelvin waves.

Assume that the area of interest is so small that the curvature of the Earth can
be neglected. We shall consider an ocean basin with uniform depth & bounded by
a straight coast and introduce a Cartsesian coordinate system xz,y, z as sketched
in fig. 6 with the z-axis along the coast and the y-axis in offshore direction.

X

Coast

Figure 6: Simple coast geometry for modelling of Kelvin wave.
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The components of the horizontal current vector ¢ = {u, v} and the sea surface
displacement n are functions of z,y and time ¢{. Neglecting the bottom friction
term and the driving force i.e. the equlibrium tide 1 we obtain from eq. (15)

Jv

Fxid=— 19
gy T/RxT=—gvn (19)
When written out in component form this equation becomes:
ou an
— fu = —qg—" 2
ot Jv & (20)
v an
- —g— 21
ot/ ="93, (21)

Similarly the equation of continuity (16) can be written

an b Ju Jv

FTR (a_x+a_y) (22)

We will seek a free wave solution propagating in z-direction along the coast

n = n(y)sink(z — ct)
u = u(y)sink(z — ct)
v=>0

where ¢ is the wave speed and k is the wave number. By substitution in eqs. (20-

22) we find.

. g .
u==n
C

iy _ .
dy g
N C .,
U= —
7l

Combination of the first and the third of these equations leads to

¢ = \/gh

and from the second and the third
.

dy ¢
which can be integrated

. /
n="1o eXp(—;y)

18



where 19 is the amplitude at the coast y = 0. This shows that the wave propagate
with the speed of long waves in shallow water and the amplitude decays expo-
nentially away from the coast. The full solution can now readily be formulated

n(z,y,t) =mno exp(—{y) sink(xz — ct)

u(y,t) = " exp(—Ly)sin k(o — et
C C

1.8 o 04 1)

144 %W
/X I A

0.8

o o 6
0 1 1 1 1 1 1 1 1 1
2 18 16 14 12 1 0.8 0.6 0.4 0.2 0

Figure 7: Contour lines for sea level displacement for Kelvin wave. Normalized
to unity at the coast y = 0.

Table 4 Parameters for a tidal Kelvin wave.

Amplitude o 1 m
Depth h 250 m
Wave speed c=+/gh 50 m/s
Current ug = 124 0.2 m/s
Period T 12 hours
Wave length A=cT 2160 km
Coriolis parameter f 1.4107% 57!
Rossby radius R 357 km




This is known as the Kelvin wave solution. The length scale for the damping
of the amplitude away from the coast, R = ?, is called the Rossby radius. The
numerical example in Table 4 serves to illustrate the properties of a Kelvin wave
with 12 hour period. Contour plots of the sea level displacement associated with
the Kelvin wave is displayed in fig. 7.

Tidal waves resembles the Kelvin wave in this examples, but in real ocean
basins the structure of the wave is modified by bottom topography and bottom

friction.

9 Numerical models

Under special conditions with idealized bathymetry and coastline configurations
it can easily be shown that the LTE, possess analytical solutions corresponding
to Kelvin waves, Sverdrup waves and topographic Rossby waves (shelf waves).
An example to this was given in the previous section. Solutions for realistic
bathymetry on global and basin scales are, however, only possible to obtained
with numerical methods. Over the last 30 years there have been a large and
sustained effort to map the tides in the worlds ocean and in coastal waters by
numerical methods (Davies et al. 1996)

In this approach the ocean is divided in grid boxes, most often with a rect-
angular grid lattice where the values of surface elevation (1) and current () are
specified at the nodes of the lattice. In this description the coastline will appear
as piecewise straight lines.

For each grid box the momentum equation (eq. 15) and the continuity equa-
tion (eq. 16) are formulated as difference equations where the values of 1 and (%)
at the nodes of the lattice are the unknown. With specified boundary condition
this set of equations is solved by a computer. Examples of numerical simulations
of the tides in the Barents Sea are provided in the next section.

10 Tidal charts for the Barents Sea

In order to describe the structure of the tides in a real ocean we shall, as an
example, consider the dynamics of the tides in the Barents Sea and in the re-
gions around Svalbard. The tides in this areas have been simulated by different
numerical models which cover the Norwegian, Greenland, Barents Seas and the
Arctic Ocean (Gjevik and Straume 1989, Gjevik et al. 1990, 1994, Kowalik and
Proshutinsky 1995 and Lyard 1997). The numerical simulations are based on
numerical solutions of Laplace tidal equations with prescribed input along the
boundary towards the North Atlantic and the tide generating force on the wa-
ter masses within the model domain included. It has been shown (Gjevik and
Straume 1989) that the inflow by tidal waves from the North Atlantic is the most
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important factor for the semi-diurnal tides in the Norwegian and the Barents
Seas and that the direct effect of the tide generating force within the basin is of
less importance. After harmonic analysis of the simulated time series of sea level
the results are displayed by contour maps for amplitude, H;, and phase §; for the
various harmonic components (figs. 8-11). These type of contour maps are com-
monly referred to as tidal charts. The M, chart (fig. 8) display a characteristic
circular center with nearly vanishing sea level amplitude south-east of Svalbard.
The contour lines for constant phase appear as spokes from the center with in-
creasing phase values when one proceeds in an anticlockwise direction around the
center. This type of contour pattern is common in tidal charts and is referred
to as an amphidromic point. Two other amphidromic points of lesser extent are
visible in figure 8. One in the Kara Sea east of Novaja Zemlja and the other one
west of Franz Josef Land. The main amphidrome south-east of Svalbard controls
the dynamics of the tide in the central parts of the Barents Sea. It shows that
a tidal wave is progressing into the Barents Sea with high amplitudes along the
coast of Finnmark and with increasing amplitude eastwards along the coasts of
Kola. At the same time as the tidal wave crest passes the coast of Finnmark the
corresponding crest of the tidal wave is progressing in the deep Norwegian Sea
and through the Fram Strait and into the Arctic Ocean north of Svalbard (phase
line 030). This wave is propagating around Svalbard and enter the Barents Sea in
the straight between Nordaustlandet and Franz Josef Land. This wave leads to a
westward propagating wave south of Edge gya and over Svalbardbanken between
Svalbard and Bear Island which is evident by the structure of the amphidromic
point. The Sy and N, tidal charts (figures 9 and 10) show a similar structure of
contour lines as for M; implying that these semi-diurnal tidal waves have nearly
the same dynamic features as M,. The tidal chart for the diurnal component K;
shows a very different structure particularly with the large amphidromic point in
the Fram Strait between Svalbard and Greenland. Also the amphidromic struc-
tures south of Svalbard are more complex then for the semi-diurnal components
with several local amplitude maxima near the shelf edge. This is a manifestation
of that the diurnal tide is resonant with shelf wave modes, with nearly the same
period as K, along the pronounced shelf edge between northern Norway and
Spitsbergen. The predictions of the model have been validated by comparing
with sea level and current measurements. On an average the standard deviation
between model and observations is less then 10 % (Gjevik et al. 1994)

An animation of the propagating M, tide in the Norwegian and Barents Seas
can be found on the internet site:

http://www.math.uio.no/~ bjorng/tidevannsmodeller/ tidemod.html.
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Figure 8: M2 tidal chart. Contour lines for amplitude, H, full drawn lines, phase
d, dotted lines. Units for amplitude meter, for phase degree (Greenwich). From
Gjevik, Ngst and Straume, 1994
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Figure 9: 52 Tidal chart. Contour lines for amplitude, H, full drawn lines, phase
d, dotted lines. Units for amplitude meter, for phase degree (Greenwich). From
Gjevik, Ngst and Straume, 1994
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Figure 10: N2 Tidal chart. Contour lines for amplitude, H, full drawn lines,
phase ¢, dotted lines. Units for amplitude meter, for phase degree (Greenwich).
From Gjevik, Ngst and Straume, 1994
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Figure 11: K1 Tidal chart. Contour lines for amplitude, H, full drawn lines,
phase ¢, dotted lines. Units for amplitude meter, for phase degree (Greenwich).
From Gjevik, Ngst and Straume, 1994

25



11 Tidal currents

Associated with the sea level changes due to tides there are complex current fields.
In open deep oceans the tidal current is normally small and of order 1 cm/s. Over
shallow banks and in coastal waters where the flow is constrained by topography
current speed can be of the order of 1 m/s. In narrow straits and sounds where
large water masses pass through during the tidal cycle current speed up to 3-5
m/s may occur. The Maelstrom (Moskstraumen) in Lofoten, northern Norway, is
one famous example (Gjevik, Moe and Ommundsen 1997). Strong tidal currents
also occur east of Spitsbergen in the Freeman Sound between the Barents Island
and Edge Island, in Heleysundet between the Barents Island and Nordaustlandet,
and also in the Hinlopen Strait between Spitsbergen and Nordaustlandet.

N

A

=y

Figure 12: The tidal ellipse

The tidal currents in open sea are generally rotary i.e. the current vector
rotates either in a clockwise or a anti-clockwise fashion during the tidal cycle.
At the same time the head of the current vector describes an ellipse. With the
current vector and its components denoted ¢ = (u,v) the tidal ellipse can be
written

where A and B are the major and minor half axis (A > B) which represent the
maximum and minimum current speed respectively. The principal coordinate
directions z and y are oriented along the direction of the major and minor half
axis of the ellipse which may in general be rotated an angle « relative to local
east or north (fig. 12). The current ellipse associated with the M, component
in the area south of Svalbard is shown in fig 13. Tidal currents are particularly
strong over the shallow banks around and northeast of Bear Island. The current
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Figure 13: The M, tidal ellipses south of Svalbard. From Gjevik et al. 1990

ellipses are here nearly circular with a clockwise rotation of the current vector.
Maximum current speed is up to 1.0 m/s which is an exceptional large current in
open ocean.

Due to the effect of friction and turbulence the tidal current may vary consid-
erably in the vertical. Density stratification may also modify the current profile
and lead to internal wave modes (internal tides). This is particularly important
in fjords (Tverberg et al. 1991).

Near the critical latitude were the period of the tide coincide with the inertial
period,it can be shown that turbulence and stratification will have a dominant
effect on the profile of the tidal current. The critical latitude for the M; compo-
nent is 75° 2.8” which passes through the Barents Sea north of Bear Island. Ngst
(1994) found that current data from this area show the expected influence on the
tidal current profile matching model predictions. Similar results from the area
near the southern critical latitude in the Wedell Sea was reported by Foldvik et
al. (1990).
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19.0° E
a) b)

Figure 14: Observed 30 days drift of Argos buoy around Bear Island (a) (Vinje et
al., 1989). Particle trajectories in tidal current from model simulations ( 7 days)

(b). (Straume et al. 1994, Gjevik 1996)

12 Drift and dispersion of particles in the tidal
flow

In areas with strong tidal currents it represents a major factor for drift and
dispersion of particles suspended in the water column. Since particles which
are displaced during the first part of the tidal cycle may move into area with
different current regime the particles will not necessary return along the same
path during the second part of the tidal cycle.Hence a net displacement or drift
may occur. The tide will for example lead to a tidal induced clockwise circulation
around Bear Island where particles will circumvent the island in 6-8 days. This
has been documented both from observations (Vinje et al. 1989) and by model
and laboratory studies (Straume et al. 1994, Gjevik et al. 1994, Kowalik and
Proshutinsky 1995, and Gjevik 1996).

13 Exercises

1. Calculate the phase angle difference corresponding to a time delay of one
hour for each of the tidal components listed in table 1.

2. At a location with predominate semi-diurnal tide the amplitude at spring
is 75 cm and at neap 35 cm. What are approximately the amplitude of the
M, and S5 components?
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10.

Assume that the tide is adequately described by only two tidal components
M; and S3. What is the exact time between neap and spring tide in this
case 7

The minimum and maximum distance between the centers of the Moon
and the Earth is 356.500 km and 406.700 km respectively. Calculate the
peak tidal acceleration in perigee and apogee position in percentage of the
mean value. What is approximately the time period between events with
the perigee at the time of full Moon?

Use tidal tables (ref. [21]) or tidal predictions available on internet http:
//www. math.uio.no/tidepred/ to find time for high and low water (LW
and HW) on 15 November 2000 at Kirkenes and Longyearbyen. Show that
the time difference for HW and LW between these two stations correspond
approximately to the phase angle difference for the My component.

Assume that sea level is responding to changes in atmospheric pressure in
a quasi steady barometric fashion such that the weight of the access water
column corresponds directly to the change in atmospheric pressure. How
large changes in the atmospheric pressure (in hPa) are required to explain
the difference between predicted and observed sea level in fig. 5 7

On basis of the tidal charts for the Barents Sea try to explain that large
tidal currents are to be expected in the Freeman Sound between the Barents
Island and Edge Island east of Spitsbergen.

Use the phase information for M; in the chart fig. 8 to estimate the average
speed of the tidal wave along the coast of Finnmark and Kola. With the
formula \/gh for the speed of long water waves find the corresponding depth.
Check the depth on maps of the area to see if this is a reasonable estimate.

The tidal current is given by its velocity components u = u,sinwt, v =
v, cos wt in a Cartesian coordinate system z,y. u,, v, are constants w is the
angular velocity and ¢ is time. Consider a particle which at ¢ = 0 is located
at the origin and subsequently drifts passively with the current. Find the
path or the trajectory for the particle. What is the maximum displacement
(tidal excursion) of the particle in the z and y direction respectively?

Suppose that we add a mean current uw along the z-axis to the tidal oscilla-
tions in problem 8. Determine the path of a particle released at the origin

at ¢ = 0 and sketch the trajectory when u = % and u = 2u,.
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