Golf Ball Flight Dynamics

James Barber 111
Cornell University
A&EP 434 Final Project
Professor Lovelace



Contents

Introduction . . . . . . . . L e e e 1
Terminology . . . . . . . . L 2
Idealizing a Golf Ball: Playing with a Smooth Sphere . . . . . .. .. .. ... ... ... 3
Introduction . . . . . . . . . e 3
The Model . . . . . . . . e 3
Results. . . . . . . e 5
The Effects of Dimples . . . . . . . . . . 5)
Introduction . . . . . . . . . e 5
The Effect of an Additional Lift Term . . . . . . . . .. ... ... ... ....... 6
The Effect of Reduced Drag . . . . . . . .. . .. 7
Conclusion . . . . . . . . . e e 10
Appendix A - Constants Used for Numerical Calculations . . . . . .. ... ... .. ... 11
Appendix B - Mathematica Code used to Model Ball Flights . . . ... ... ....... 12

Bibliography . . . . . . .. 14



James Barber 11 Golf Ball Flight Dynamics 1

Introduction

Although poorly documented, golf is believed to have originated in Scotland in 1456[1]. It was
first played as a very casual game for which no standard rules existed. A wooden ball was used
in conjunction with wooden clubs prior to 1618[2], when the “featherie” (a ball made of stitched
leather and tightly packed with feathers) was introduced. The featherie was favored for its more
forgiving feel on the hands of players when it was struck and was used until 1848 when the invention
of the “Gutta” surpassed the “featherie” in both durability and cost. The “Gutta” was made of
gutta-percha packing material which was not brittle and became soft and moldable at 100°C.

The Gutta’s pliability made it necessary to roll the ball on a “smoothing board” in order to
maintain its shape and keep it free of imperfections which were created during normal play of the
game. The smooth Gutta was used for only a few years before players began to realize that balls
that had not been well maintained and had many nicks and scratches had a much more favorable
flight. Thus began the practice of hammering the Gutta with a sharp-edged hammer in a regular
pattern to increase the consistency of the ball’s play.

In 1898 the first “Balata” ball was created by wrapping rubber thread around a solid rubber
core which was then covered by a solid layer of rubber that later became known as the “ball cover”.
The Balata was the first sign of a modern age of golf technology for it allowed molds to be used to
create consistent cover patterns. In 1908 makers discovered the superiority of a regular “dimple”
pattern over the haphazard grid pattern favored by players at the time.

Dimples are small indentations on the exterior of the golf ball. They are typically round in shape
and vary in diameter from 2-5mm in diameter and are about .2mm deep. Modern golf balls pack
anywhere from 300-450 dimples of varying size arranged in a regular pattern on the outside of every
ball[3]. Dimples have been one of the most influential developments in golf ball design because they
alter the dynamics of the balls flight in such a way that gives golfers a significant amount of control
over the height and shape of their shots.

Today, golf balls are highly regulated by the United States Golf Association (USGA) for com-
pliance with rules governing the design and capabilities of a golf ball. Modern materials, such as
Surlyn and Urethane as well is different core designs, have given ball designers the ability to create
golf balls with almost any property desired (higher spin, softer feel at impact, lower trajectory,
etc...). It is well known that due to the complexities involved with the aerodynamics of a golf ball,
ball designers have taken a “design, test, and modify” approach to ball design as an alternative to
computer modeling and CAD techniques.

In this paper I investigate a recent mathematical derivation for the aerodynamics of a smooth
sphere and attempt to extend it to golf balls by incorporating the effects of dimples on air flow
and comparing the results of simulations to observations taken from modern professional golfers.
Although this technique will hopefully one day lead to the derivation of equations governing the
flight of balls with arbitrary dimple patterns in pursuit of optimizing dimple design for maximum
distance, the scope of this paper is limited to comparing two key effects that dimples have on ball
flight.
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Terminology

Golfers use a significant vocabulary that may not be recognized by those unfamiliar with the game.
This section gives an introduction to basic terminology that will be used throughout this document.

Loft - The angle between the club face and the shaft. The more loft a club has, the higher it will
launch the ball at impact.
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Figure 1: Loft[4]
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Impact - The instant in time when a player strikes the ball with the club.

Ball flight - The path a ball takes after impact, while it is in the air. There are also two broad
types of shot shapes: a hook and a slice, and two directional descriptors: a pull and a push. A
hook is a ball flight in which the ball curves from right to left due to a small amount of side-
spin being imparted to it at impact. Similarly, a slice is a ball flight in which the ball curves
from left to right, due to sidespin imparted to the ball at impact in the opposite direction from
the hook result. A pull is when the ball starts its path to the left of its intended destination.
Likewise, push is when the ball starts its path to the right of its intended destination. Please
note that each of these terms is defined for a player using “right-handed” clubs, and changes
its meaning if the player uses left-handed clubs.
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Figure 2: Ball Flights[5]

Carry - The distance a ball travels in the air, after being struck. Note that this excludes the
distance that the ball bounces and rolls after it first strikes the ground (this is called roll).



James Barber 11 Golf Ball Flight Dynamics 3

Idealizing a Golf Ball: Playing with a Smooth Sphere

Introduction

A golf ball is a sphere about 4.2cm in diameter, with hundreds of small niches (dimples) carved in
its outer face. While the dimples play a key role in the flight dynamics of the ball, I refrain from
covering their effects until the next section. In this section we use a complex mathematical model
derived and published by Karl I. Borg[6] in 2003 to model the flight of a golf ball under conditions
typical for a professional golfer when striking the ball with a driver (see table 1). While this model
is intended for use at low Reynolds Numbers, it has been experimentally shown to be reasonable as
well for higher Reynolds Numbers. The Reynolds Number is a quantity that indicates the relative
importance of inertial forces compared to viscous forces in determining its path through a gas or
fluid. High Reynolds Numbers indicate that viscous forces are less important.

_da-v

v

Re

(1)

Equation (1) is used to compute the Reynolds Number (Re), where d is the diameter of the object,
V is the objects velocity, and v is kinematic viscosity of the fluid or gas, given by (2),

_H
v=" (2)

where p is the Absolute Viscosity of the fluid or gas (fixed value for a given compound) and p is
its density. For a golf ball flying through 68°F air at sea level, the associated Reynolds Number
falls in the range of 2.15x10° to 9.0x10%, which means that viscosity is much less important than
the ball’s inertia.

The Model

Borg’s model incorporates drag, heat exchange between the gas and the sphere (ball), and the
Magnus Effect. The Magnus Effect (occasionally referred to as the Robins Effect for spheres) is a
lift force that results from the rotation of a cylinder or sphere as it moves through a fluid or gas
and was first described by German physicist Heinrich Magnus in 1853[7]. The lift force occurs as
a result of spin creating a region of lower pressure above a ball with backspin (due to Bernoulli’s
Principle). The net force on the sphere as derived by Borg et al is given by (3)

— 2 1 Cx
F = —ole—T;pRg1 / QZ:Txﬂ%(z)\_f' — aT§§WR3mncD' XV — aTgﬂRgmnx\f;)@’ X (dxv) (3)

where a; is the accommodation coefficient of tangential momentum (fraction of reflected gas par-
ticles that are reflected diffusely), R is the radius of the sphere, m is mass of a single molecule of
the gas, kr is Boltzmann’s Constant, T is the temperature of the gas, & is the angular velocity
of sphere’s rotation, v is the velocity of the sphere, and p, x, z, and £ are given by equations (4)
through (8)
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p =nkpT (4)
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where n is the number density of the gas, k is the heat conductivity of the sphere, j; are the
spherical Bessel functions of the first kind (with j] its derivative), i = v/—1, and k is given by

k= — ()

where C), is the heat capacity of the sphere and p is the density of the sphere. Values used in
the simulation for each of these constants can be found in appendix A. Many of the parameters
required by this model are properties of materials whose values are readily available, while others
are determined based on launch conditions. For purposes of comparison and the availability of data,
launch conditions for tour professionals were used where required - launch conditions for various
top tour professionals are given in table 1

Player V (MPH) | V (m/s) | Angle (deg) | Spin (rpm) | Spin (sec™!) | Carry (m)
Vijay Singh 176 78.68 10.7 2,600 972.3 982.46
Robert Allenby 161 71.97 8.5 2,390 250.3 274.59
Peter Lonard 168 75.10 11.7 2,673 279.9 268.38
Phil Mickelson 178 79.57 13.0 2,200 230.4 281.64
Ernie Els 174 7778 11.5 2,400 251.3 292.24
Test Conditions 170 76.00 12.0 2,626 275.0 7777

Table 1: Lanch conditions and statistics for top PGA Tour Professionals[8]
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Results

Although the amount of spin varies significantly with the skill of the player and club selection, this
paper assumes as valid data taken from current tour professionals for modeling purposes. A tour
pro generates about 12,000 RPM of backspin at impact when hitting with a sand wedge (loft ~ 56°)
and anywhere from 2,200-2,800 RPM with a driver (loft ~ 10°). Using this information and values
given in appendix A, a recursive program (see appendix B for code) was utilized to model the
trajectory of a smooth golf ball in flight.

al > "= o B &0
meters

Figure 3: Simulated flight of a smooth sphere using golf tour professional launch conditions and a
mathematical derivation of flight forces presented by Borg]6]

While the shape of this curve appears reasonable, anyone familiar with golf will immediately notice
the short carry distance predicted in this simulation, as well as the low peak height obtained. From
table (1) we could estimate that a modern golf ball launched under similar conditions would carry
about 280m and reach an altitude of about 30m. These large differences between the model and
observation highlight the critical role of dimples in determining golf ball trajectory.

The Effects of Dimples

Introduction

As was shown in the previous section that an idealized sphere could serve as an adequate recreational
ball, in golf it is desirable to be able to make the ball fly further and allow golfers to have more
control over their shot “shape” (hook or slice) and trajectory. Dimples (or their predecessors) have
served this dual purpose in golf for over 100 years. While it is undisputed that dimples have had a
dramatic effect on ball flight for two key reasons - lift generation and drag reduction - little progress
has been made in determining which effect is more significant. In this section I attempt to show,
using a simplified model of each of these effects, that drag reduction from the addition of dimples
has made a significantly larger contribution to the flight of a golf ball than the addition of a lift
force.
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The Effect of an Additional Lift Term
Dimples generate a lift force on the golf ball because of the significant amount of backspin imparted
to the ball at impact. This spin creates an asymmetry in the speeds at which air flows over the
dimples in the top and bottom of the ball. Assuming the ball is traveling at velocity V4 and the
ball is spinning with angular velocity w, the air speeds relative to the top and bottom of the ball
are given by (10)
V;fop =Vo—wR
%ottom - VE) + wR (10)

where R is the radius of ball. Since, in air, lift is proportional to velocity squared[9], this gives a
net lift on the ball from the dimples of

Lift &< Vigrom — Viep = (Vo + wR)? = (Vo — wR)? = 4VowR x VowR (11)

Using this relation and estimates of the lift coefficient (Cy,) in the range of 1.5x107° to 3.0x107° kg/m,
the results in figure (4) were obtained when this term was incorporated into the existing model.

181
161

ot x4 B &l
meters

Figure 4: Simulated ball flight with the addition of a lift term

When this result is compared to the ball flight in the previous section without the lift term, it is
easy to see that the lift term did little to increase the distance that the ball traveled. It should be
noted, however, that the lift term did make two important changes to the result: 1) the ball traveled
higher than without this term (=9m at its peak), and 2) the ball stayed aloft for a significantly
longer period of time (4.9 seconds vs. 3.1 seconds without lift). The shape of this trajectory is
similar to that of a golf ball hit with more than an optimal amount of backspin - this shape is
known as a “blow up” in golf (figure 5). This simulation showed several encouraging signs that
seemed to indicate that the approximate lift force used gave realistic results.
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Figure 5: Observed golf ball trajectories based on spin rate at launch|[10]

The Effect of Reduced Drag

After investigating the affects of the addition of lift and observing the results of its application
to the model of a smooth sphere in flight it is clear that drag is still a significant factor affecting
the distance that the ball carries. Dimples have a counter-intuitive effect on drag, although they
roughen the surface of the ball, this adds turbulence to the boundary layer, which reduces drag by
delaying boundary layer separation on the trailing side of the ball. This delayed separation of a
turbulent boundary layer results in a narrower vortex street, decreasing the drag force that vortex
formation exerts on the ball.

In an attempt to investigate the effects of reduced drag we make use of White’s model for drag on
a sphere[10]. This simplified model neglects the effect of the balls spin in its flight. The model can
be summarized by equations (12) and (13)

_ 8w

B Re - |:05 - + 10910 (%)}
—4mvV

0.5 — v+ logro (%)

Cy (12)

Firag = —C4RV? = 13
g

where v is the kinematic viscosity of air, V is the velocity of the ball, v is the Euler-Mascheroni
Constant (/.5772), R is the radius of the ball, Re is the Reynolds Number, and Cy is the drag
coefficient. This model is intended to incorporate important drag considerations that the addition
of dimples requires. The most important of these considerations is the alteration of the drag curve
imposed by the turbulent flow created by the dimples.
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Figure 6: Flow modifications imposed by the addition of dimples[11]

This lowered Reynolds Number required for the transition to turbulent flow (steep drop in drag
coefficient) is necessary because even professionals are only able to give the golf ball an initial
velocity high enough to create a Reynolds Number of about 4x10°, which would not quite reach the
value required for the large drop in drag coefficient for a smooth sphere. With the dimples, however,
a Reynolds Number of only 5x10* is necessary to achieve a significant drop in drag coefficient; this
value can be reached by a golf ball moving at just 8.9 m/s - a speed above which the ball travels
for the entirety of its flight, thereby gaining maximum possible gains from the modified drag curve.
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Figure 7: Simulated ball flight for a sphere with reduced drag

Several observations can be made from the results of the simulation using the simplified, reduced
drag model. First, the shape of the flight is much more ideal because the model neglects the effects
of spin on drag, and also excludes lift forces due to spin. The most dramatic difference to notice in
this simulation is large increase in carry (over 150m). This is most likely due to a higher velocity
being maintained throughout the ball’s flight, which allows the ball to travel much further in the
horizontal direction in the same amount of time. It is also important to note that the maximum
height achieved is 60% (5 meters) higher than that of the smooth ball. While this is still quite far
from the heights typical of actual golf balls (30m), it is not difficult to see the aggregate effects of
the reduced drag and increased lift combining to yield a significantly higher peak height.
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Combining the Effects of Additional Lift and Reduced Drag
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Figure 8: Simulated ball flight for a sphere with reduced drag and an additional lift term

As a final exhibition, figure (8) represents a simulated golf ball flight by using both the reduced drag
force and the addition of a lift term. These two very simplistic force models combined harmoniously
to produce a simulated ball flight with parameters that very nearly match observed values. An
unfortunate by-product of using the simplified drag model is loss of shape in the balls path. This
effect is noticeable when comparing the simplified drag model results (figures 7 & 8) to results from
using Borg’s full drag equation (figures 3 & 4). Both the angle of impact as well as the speed of
the ball at landing should be subject to scrutiny in this model. While the ball is moving at about
37m/s just before it hits the ground in this model, observation has the ball impacting the ground at
just under 32m/s. It should be noted that this is a significant improvement (in terms of modeling
a golf ball) over Borg’s model which predicts a smooth sphere to hit the ground at around 10m/s.
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Conclusion

While it was clear that neither increasing the lift nor reducing the drag on the ball are enough
alone to change the trajectory to match what is observed in actuality, it is not difficult to see that
the reduction in drag has a much larger effect on the trajectory of the ball. While Borg’s derivation
of the forces on a smooth spinning sphere in flight is quite impressive and proves very successful
in modeling the flight of a smooth sphere, a significant amount of work remains to incorporate the
effects of dimples on the balls flight to a level where the model could be of use to ball designers.
This appears to be a clear next step in the technological advancement of the golf industry. While
practical methods and designs have brought significant advances in ball technology, computers and
modern aerodynamic theory should allow for true optimization of golf ball design.
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Appendix A - Constants Used for Numerical Calculations

. . . °_AN°
ar = accommodation coefficient of tangential momentum = 36%6();10 = %

R = radius of the sphere (golf ball) = 2.13cm

m = mass of a single molecule of the gas (air, average) = 28.98 amu = 4.812 x 10726 kg
kp = Boltzmann’s Constant = 1.38 x 10_23%

T = temperature of the gas (air) = 20°C = 293.15°K

& = angular velocity of sphere’s rotation = 76 % (at launch)

v = velocity of the sphere (golf ball) = 762 (cos ({5) , sin (f5) ,0) (at launch)

Launch angle = 12° = {= radians

25 molecules
e B

n = number density of the gas (air) = 2.503 x 1

k = heat conductivity of the sphere (assumed to be made of hard rubber) = 0.4m

C, = heat capacity of the sphere = 124% = 519.160‘;(

p = density of the gas (air) at 20°C and 1 atm = 1.2047 %

1 = Absolute Viscosity of the gas (air) = 1.82 x 10724

m-sec
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Appendix B - Mathematica Code used to Model Ball Flights

>with(LinearAlgebra) :
deltaT:=.01;

M:=.04593;
BallPosition:=<0,0,0>;
GravForce:=<0,-9.8*%M,0>;

> with(LinearAlgebra):

B:=(1-I)*sqrt(VectorNorm(omega, 2)*(R2)/ (2%k)) ;
chi:=(alphaT*n*KB*T/kappa) *sqrt (KB+T/(2*Pi*m)) ;

k:=kappa/ (rho*Cp) ;
z:=BesselJ(1,B)/(chi*BesselJ(1,B)+B*(BesselJ(0,B)-BesselJ(1,B)/B));
p:=n*KBx*T;

xi:=1-(chi/4)*(Re(z)+sqrt (2*#Pi*KB*T/m)*Im(z) / (4*VectorNorm(omega, 2)*R));

> refreshV := proc(Fnet)

global V, deltaT, M:
V:=V+ScalarMultiply(Fnet, deltaT/M):
end proc:

> refreshBallPos := proc()

global deltaT, V, BallPosition:
BallPosition:=BallPosition+ScalarMultiply(V, deltaT):
end proc:

> computeFnet := proc()
global V, omega, GravForce, B, chi, z, xi, p, k, Force, DragForce, NetForce, LiftForce,
Clift, R, CD, nu:

R:=.04267/2:
nu:=.000015:
with(LinearAlgebra) ;

Force:=-alphaT*(Pi/12*p*R2*sqrt (Pi*m/ (2*KB*T))*chi*Re (z) *V-2/3*x1i*Pi*R3*m*n*
CrossProduct (omega, V)-Pi/3*R3*m*n*chi*Im(z)/VectorNorm(omega, 2)*
CrossProduct (omega, CrossProduct(omega, V))):

DragForce:=eval (Force, [alphaT=280/360, n=2.503e25, KB=1.38e-23, T=293.15,
R=.04267/2, m=4.812e-26, kappa=.4, rho=1.1347e6, Cp=519.16]):

#The following lines alter the drag force to a less precise model
#CD:=4*Pi*nu/(.5-.577215665+10g10 (4*nu/ (R*VectorNorm(V, 2)))):
#DragForce:=ScalarMultiply(V, -CD):

#The following lines alter the drag force to the most basic model (CD=comnst.)

#CD:=.29;
#DragForce:=ScalarMultiply(V, -CD*R):

LiftForce:=<0,0,0>:
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# The following adds a 1lift term to the forces
#Clift:=.000015;
#LiftForce:=Clift*CrossProduct (omega, V):

NetForce:=evalf (DragForce+GravForce+LiftForce) :
end proc:

> # this subroutine updates the amount of spin on the ball (Cds is an arbitrary Cefficient)
refreshSpin := proc()
global omega, Cds, M, omegal, deltaT:

Cds:=-24xM/ (35*omegal) :
omega:=omega+ScalarMultiply(omega, deltaT*Cds*VectorNorm(omega, 2)):
end proc:

> # Main simulation routine

VI:=76;

omegal:=275;

V:=<VI*cos(2%¥Pi*12/360), VI*sin(2*Pi*12/360), 0>:

StrikeAngle:=0; #defines a non-square hit that alters the spin axis, causing a hook
omega:=<0,omegal*sin(StrikeAngle) ,omegal*cos(StrikeAngle)>:
BallPosition:=<0,0,0>:

MaxInt:=1000;

with(LinearAlgebra) :

Ball:=[[0,0], [0,0]]:

for i from 1 by 1 to MaxInt do
refreshBallPos():

Ball:=[op(Ball), [evalf(BallPosition[1]), evalf(BallPosition[2])]1];
computeFnet () :

refreshV(NetForce) :
#refreshSpin():

# Stop calculating the ball path if it has gone below the ground
if ( evalf(BallPosition[2]) < 0 ) then break end if:

end do:

FlightTime:=i*deltaT;
Carry:=evalf(BallPosition[1]);
Vfinal:=evalf (V) ;
plot(Ball,style=LINE);
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