Välkommen till Resurscentrums frågelåda!

 

Vill du ha ett snabbt svar - sök i databasen: Anpassad Google-sökning
(tips för sökningen).
Använd diskussionsforum om du vill diskutera något.
Senaste frågorna. Veckans fråga.

3 frågor/svar hittade

Blandat [19032]

Fråga:
Kvantvärlden är ju slumpmässig. Gäller detta även den "klassiska" världen?
/Veckans fråga

Ursprunglig fråga:
Inom den verkligt lilla världen vars lagar studeras inom kvantmekaniken råder ju en grundläggande slumpmässighet, definierad genom Heisenbergs osäkerhetsprincip.

Att vi inte kan förutsäga utgången av t.ex. ett tärningskast, eller vädret under en längre tid framåt ("fjärilseffekten", kaos) brukar också diskuteras i termer av slumpmässighet, men dock på ett högre och inte lika grundläggande nivå.

Det skulle kanske vara möjligt att konstruera en maskin som utförde det perfekta tärninskastet, men även detta skulle väl då egentligen vara omöjligt, beroende på den grundläggande inneboende slumpmässigheten i världen, definierad inom kvantmekaniken?

Hur hänger detta ihop?

Världen är i grunden icke deterministisk. Följer av detta att ALLT skulle kunna inträffa? Detta är fallet inom termodynamiken. Att vi aldrig upplever det, beror då på att det är så oerhört osannolikt.

Det är teoretiskt sett möjligt att gå igenom en vägg (tunnling), men sannolikheten för att makroskopiska föremål ska göra det är så oerhört liten, så att vi inte behöver ta det i beaktande. Dock, strikt matematiskt, finns det en möjlighet. Givet oändlig tid och oändliga försök.....? Innebär detta då inte att egentligen "ingenting är helt säkert"?

De fluktuationer och den osäkerhet som finns på kvantnivå brukar förklaras som att de "tunnas ut" alltefter som vi förflyttar oss upp till den nivå i rummet som vi är vana vid. Kvantmekanikens effekter gäller endast mycket korta avstånd. (Tanken på universums skapelse ur ingenting är sprunget ur detta.) Men borde inte dessa effekter om än MYCKET osannolikt kunna påverka även vårt storskaliga universum idag? Alltså - mycket teoretiskt - är det verkligen t.ex. helt säkert att solen går upp imorgon eller kan osäkerheten inom den lilla världen ge effekter?
/Fredrik O, Kungsholmen, Stockholm

Svar:
Fredrik! Blev lite filosofiskt det där . Se fråga 951 för en diskussion om determinism.

Ja, man kan antagligen se en yttring av av slumpmässighet som överlevt från Big Bang. Temperaturvariationerna i den kosmiska bakgrundsstrålningen (se fråga 705 ) kan vara slumpmässiga s.k. vakuumfluktuationer (se fråga 11001 ) från före den supersnabba expansionen (inflationen) 10-38 sekunder (se fråga 17472 ) efter Big Bang.

Nedanstående bild från rymdsonden Planck (länk 1) visar de senaste resultaten på "grynigheten" hos universum när det var 380000 år gammalt.

Den största enhet jag vet man visat att den uppför sig kvantmekaniskt slumpmässigt är fullerener genom en dubbelspalt, se fråga 1807 .

Slumpmässighet och obestämbarhet förekommer inte bara i kvantmekaniska system. Det finns även många klassiska system som är kaotiska, se t.ex. fråga 17160 om planeternas rörelse i solsystemet.

Kvantmekanikens räknelagar fungerar oberoende av massa och energi. Det är bara att kvantmekaniska effekter blir mycket små med makroskopiska värden på massan.

Korrespondesprincipen innebär att kvantmekaniska effekter övergår i klassiska värden för höga kvanttal, se Correspondence_principle :

The rules of quantum mechanics are highly successful in describing microscopic objects, atoms and elementary particles. But macroscopic systems, like springs and capacitors, are accurately described by classical theories like classical mechanics and classical electrodynamics. If quantum mechanics were to be applicable to macroscopic objects, there must be some limit in which quantum mechanics reduces to classical mechanics. Bohr's correspondence principle demands that classical physics and quantum physics give the same answer when the systems become large.


/Peter E

Nyckelord: kaos [3]; kosmisk bakgrundsstrålning [14]; kvantmekanik [26];

1 http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=51551
2 http://pespmc1.vub.ac.be/CHAOS.html

*

Universum-Solen-Planeterna [17160]

Fråga:
Hur kan planeterna hålla sig kvar i stabila banor runt solen i många miljarder år?
/Veckans fråga

Ursprunglig fråga:
Hur kan planeterna hålla sig kvar i stabila banor runt solen i många miljarder år? Vet man någonting om detta egentligen? Är t ex Jordens medelavstånd till solen alltid detsamma, eller har det alltid varit detsamma.

Jag vet t ex att Månens medelavstånd till Jorden långsamt ökar och att Månen till slut kommer att lämna sin bana runt Jorden och att detta beror på energiförluster som orsakas av tidvatteneffekterna på Jorden.

Jag tänker mig att när gravitationskrafterna håller kvar en planet i en bana runt solen så måste det ju vara ett instabilt system där minsta rubbning kommer att få planeten att antingen falla in mot solen eller falla ifrån den, först långsamt sedan allt snabbare. Det borde ju vara ungefär som att försöka ställa en rak pinne så att den balanserar rakt upp och förblir stående, kanske inte för alltid men åtminstone för en mycket lång tid, där den minsta lilla rubbning i balansen gör den instabil och pinnen faller till marken.

Ett annat liknande exempel är elektronernas banor runt en atomkärna som ju måste vara mycket stabil. I detta fall känner jag till en förklaring till att elektronbanan förblir stabil, nämligen att när elektronen, som ju har en massa, rör sig runt atomkärnan så är detta en accelererad rörelse och när en massa accelereras så sänds en vågrörelse ut pga den sk partikeldualismen och elektronen bildar en sk stående våg i sin bana runt atomkärnan och att det är denna stående våg som gör elektronbanan stabil.

Finns det något liknande fenomen när det gäller en planetbana runt solen? Kan det vara ett slags samspel mellan planeterna där de påverkar varandras banor med gravitationskrafterna som skapar en stabilitet i de olika planeternas banor runt solen?

Har jag lyckats beskriva mina frågor tillräckligt bra för att det skall framgå tillräckligt tydligt vad jag egentligen frågar efter? Är mitt resonemang, eller mina föreställningar, felaktiga på något sätt?
/lars e

Svar:
Den grundläggande anledningen till planetsystemets stabilitet är att planetbanorna är utspridda och ganska cirkulära. Det är alltså viktigt att stora planeter inte kommer för nära varandra. Det är även viktigt att förhållandet mellan omloppstider inte är hela tal - då kan man få stora effekter pga s.k. resonanser.

Månens rörelse bort från jorden beror som du säger på tidvattnet, se fråga 8359 .

Från geologiska data kan vi säga att jordens bana varit mycket stabil i miljarder år - det har t.ex. funnits vatten och enkelt liv i c:a 3.5 miljarder år (solsystemet är c:a 4.5 miljarder år gammalt). Jordens medelavstånd till solen har alltså varit mycket stabilt. Däremot varierar excentriciteten (hur avlång banan är) pga störningar från jätteplaneterna Jupiter och Saturnus. Denna ändring i excentricitet är antagligen den dominerande orsaken till att vi får istider med ganska jämna mellanrum, se fråga 830 .

Även om man mätt upp planeternas banor och massor ganska exakt, så är det inte ett trivialt problem att beräkna hur stabilt systemet är, eftersom det faktiskt på längre sikt är ett kaotiskt system (se kaos ). Systemet är alltså i princip oförutsägbart eftersom en liten variation i ingångsvärdena kan medföra stora skillnader i sluttillståndet.

Som solsystemet ser ut i dag så är det emellertid ganska stabilt. Antingen har det bildats på det sättet eller så har de planeter som från början "ställde till problem" kastats ut ur solsystemet eller kastats in i solen. Om ett större objekt (jordstorlek) skulle komma in i det inre solsystemet skulle situationen kunna bli besvärlig eftersom de inre planeternas banor skulle störas. Detta är emellertid mycket osannolikt på kort sikt (miljoner år) - de enda objekt som kommer in i det inre solsystemet utifrån är kometer. Dessa har så liten massa att allt utom en direkt kollision är ofarligt.

Bilden nedan (från Wikimedia Commons, länk 1) visar resultatet av räkningar på solsystemet. Man har gått 10 miljarder år tillbaka (helt teoretiskt naturligtvis eftersom solsystemet existerat i mindre än 5 miljarder år) och 15 miljarder år framåt i tiden. För varje planet plottas excentriciteten hos banan - egentligen maximum under varje 10 miljon år. Eftersom systemet är kaotiskt är det inte direkta förutsägelser som plottas - det är vad som sannolikt skulle kunna hända. För lite annorlunda startvärden skulle detaljerna i plottarna (var topparna ligger) kunna vara annorlunda.

Som synes händer inget med de stora planeterna, men de minsta huvudplaneterna uppvisar ett mycket intressant beteende. Merkurius' bana får en excentricitet som skulle göra kollisioner mellan Merkurius och Venus möjliga. Mars påverkas ganska mycket, medan Venus och jorden inte påverkas särskilt mycket. Intressant är emellertid att Venus och jorden tycks ändra excentricitet i takt med varandra!

Dina funderingar om elektroner i atomer är inte korrekta. För det första är det inte bra att föreställa sig att elektronerna rör sig i banor runt kärnan som planeter runt solen. Det är bättre att föreställa sig att att elektronens position styrs av ett "sannolikhetsmoln", se fråga 13733 . För det andra så är de lägsta tillstånden stabila - det finns enligt kvantmekanikens lagar inget lägre tillstånd att hamna i och energins bevarande vill vi inte ge upp!

Se även fråga 108 , fråga 16606 och länkarna nedan.



/Peter E

Nyckelord: solsystemet [7]; kaos [3]; planet [14];

1 http://www.scholarpedia.org/article/Stability_of_the_solar_system
2 http://www.pnas.org/content/98/22/12342.full

*

Blandat, Kraft-Rörelse, Materiens innersta-Atomer-Kärnor [951]

Fråga:
Om vi i ett visst bestämt ögonblick visste alla atomers exakta position, skulle vi då kunna beräkna var de befinner sig vid ett senare tillfälle, d v s förutse framtiden.
/Jim W, universitet, umeå

Svar:
En intressant och klassisk fråga! Newton skulle svarat ja på frågan (han ansåg världen vara deterministisk, Determinism#Quantum_mechanics_and_classical_physics ), men i dag vet vi att det finns två begränsningar: kaos och kvantmekanik.

Kaos: i praktiken kan man inte bestämma alla atomers exakta position, det finns alltid en osäkerhet. Om systemet är komplicerat, så händer det ofta att om man ändrar begynnelsevärdena med mindre än osäkerheten, så blir utvecklingen av systemet helt olika. Man säger att man har ett "kaotiskt system". Detta kallas i meteorologin för "fjärilseffekten", och är anledningen till att man inte kan förutsäga väder för längre tid än ungefär 10 dagar, se länk 1. Nedan visas ett exempel på ett kaotiskt system kallat Lorenz_attractor . Se Chaos_theory för mer om kaotiska system.

Kvantmekanik: Heisenbergs obestämdhetsrelation förbjuder att man bestämmer till exempel läge och hastighet (egentligen rörelsemängd) hos en partikel med stor noggrannhet. Detta var den del av kvantmekaniken som Einstein inte gillade och förde många diskussioner med Niels Bohr om. Senare experiment har visat att Einstein hade fel, se fråga 1513 . Se vidare Heisenberg_uncertainty_principle och Osäkerhetsprincipen#Tolkningar .



/Peter Ekström

Nyckelord: Heisenbergs obestämdhetsrelation [11]; kaos [3]; *meteorologi [17];

1 http://www.smhi.se/forskning/forskningsomraden/analys-prognos/

*

Ämnesområde
Sök efter
Grundskolan eller gymnasiet?
Nyckelord: (Enda villkor)
Definition: (Enda villkor)
 
 

Om du inte hittar svaret i databasen eller i

Sök i svenska Wikipedia:

- fråga gärna här.

 

 

Frågelådan innehåller 7203 frågor med svar.
Senaste ändringen i databasen gjordes 2017-11-19 11:33:22.


sök | söktips | Veckans fråga | alla 'Veckans fråga' | ämnen | dokumentation | ställ en fråga
till diskussionsfora

 

Creative Commons License

Denna sida från NRCF är licensierad under Creative Commons:
Erkännande-Ickekommersiell-Inga bearbetningar
.