Välkommen till Resurscentrums frågelåda!

 

Vill du ha ett snabbt svar - sök i databasen: Anpassad Google-sökning
(tips för sökningen).
Använd diskussionsforum om du vill diskutera något.
Senaste frågorna. Veckans fråga.

4 frågor/svar hittade

Kraft-Rörelse [20568]

Fråga:
Hej! Jag läser matematik 5 på gymnasiet och har fått i uppgift att beräkna flykthastigheten från jorden, solsystemet och vintergatan. Att beräkna flykthastigheten från jorden är, med några förenklingar, lätt att göra. Detta kan göras genom att sätta i jordens massa och radie i ekvationen v = (2Gm/r)^0,5. Det jag undrar är hur man ska gå tillväga vid beräknning av flykthastigheten från solsystemet och vintergatan. Det jag har gjort är att bortse från andra objekt i solsystemet och vintergatan än dess centrum och sedan använda samma formel, v = (2Gm/r)^0,5, för att beräkna flykhastigheten. Detta eftersom det är för komplext att räkna med de andra himlakropparna. Är detta rätt? Finns det ett bättre sätt? Tack!
/Vilmer D, Olympiaskolan, Helsingborg

Svar:
Uttrycket du anger för flykthastigheten är korrekt (se fråga 3782 ). Detta gäller för jordytan (r = jordens radie). för solsystemet fungerar formeln utmärkt, man måste bara bestämma sig för vilket avstånd till solen man vill använda. Det rimligaste torde vara r = jordbanans radie. Vi får då

v = (2Gm/r)1/2 = (2*6.67*10-11*1.99*1030/(150*109))1/2 = 4.21*104 m/s = 42.1 km/s.

Övriga kroppar i solsystemet har så liten massa jämfört med solen att vi kan bortse från dem.

Vintergatan är emellertid annorlunda. Där måste du ta hänsyn till massfördelningen, och då blir det riktigt krångligt. Det finns ingen formel, så du måste integrera över massfördelningen.
/Peter E

Nyckelord: flykthastighet [4];

*

Kraft-Rörelse [15646]

Fråga:
Beräkning av flykthastighet
/Veckans fråga

Ursprunglig fråga:
Hej Angående flykthastighet (fråga 3782) Jag är lärare på grundskolan och där använder vi inte integraler för beräkning av flykthastighet. Resonemanget är i stället att den potentiella energi en kropp har vid jordytan, i förhållande till jordens tyngdpunkt, är jordradien*g*m. Hela denna energi skall omvandlas till rörelseenergi mv2/2.

Vi finner naturligtvis att m förkortas "bort" och när vi löser ut

v=sqr(2*9,82*6,3471*106)

blir flykthastigheten 11,19. På mostsvarande sätt gör vi för månen. Finns det någon invändning mot ovanstående resonemang? Undrar och hälsar Nils C
/Nils Eric C, Påarp, Helsingborg

Svar:
Det är inte fel att räkna ut flykthastigheten från den potentiella energin vid jordytan (-mgR). Problemet är bara var man får uttrycket ifrån. Om det kommer från det vanliga uttrycket för potentiell energi nära jordytan mgh så är det fel. Det är bara en tillfällighet att uttrycken är så lika. Uttrycket mgh gäller bara om kraften är konstant, dvs nära marken. Den korrekta härledningen av uttrycket kräver att man integrerar, se nedan.

Låt oss först räkna ut flykthastigheten från ovanstående uttryck. Massan m på jordytan är alltså bunden med energin (-mgR). För att massan skall vara fri från från jordens gravitation måste vi tillföra kinetisk energi med samma belopp. Massan har då potentiella energin noll, och är fri. Vi får

mv2/2 = mgR

dvs

v = sqrt(2gR) = sqrt(2*9.82*6.37*10^6) = 11200 m/s = 11.2 km/s

Eftersom kraften på massan m varierar när vi tar den från jordytan till oändligheten, så kan man inte komma ifrån integration. Kraften mellan massorna m och M är

F = GmM/r2

där r är avståndet och G är gravitationskonstanten. Om vi integrerar kraften får vi potentialen

U = -GmM/r

Det gäller alltså att

U = -F*r

Detta beror på att avståndsberoendet hos kraften är som 1/r2. Vid jordytan r=R gäller alltså

U = -F*R = -mgR

där vi eliminerat gravitationskonstanten G genom att i stället använda tyngdaccelerationen g (tyngdkraften vid jordytan på massan m är ju mg).
/Peter E

Se även fråga 3782

Nyckelord: potential/potentiell energi [26]; Newtons gravitationslag [10]; flykthastighet [4];

*

Universum-Solen-Planeterna [14367]

Fråga:
Energi från ett svart hål.
/Veckans fråga

Ursprunglig fråga:
Tja, jag läste att när en massiv stjärna dör och övergår till ett svarthål en s.k. supernova så kan energi skickas ut i form av gravitations vågor. ibland kan det röra sig om så mkt som 10^44 joule. Vart kommer denna energi ifrån är den totala massan mindre efter?
/Karl J, Hjärteskolan, Trosa

Svar:
Energin kommer från bindningenergin. En massa som faller ner i ett svart hål binds av gravitationsfältet på samma sätt som en elektron binds i en atom. Elektronen skickar ut ljus när den övergår till lägre tillstånd. Det kan även infallande materia i ett svart hål göra genom kollisioner och uppvärmning, men en massa som rör sig snabbt kan även sända ut gravitationsvågor .

Den energi som sänds ut som elektromagnetisk strålning eller gravitationsvågor är förlorad, så massan av det kompakta objektet minskar med detta belopp. Låt oss titta lite närmare på energiförhållandena.

Klassiskt (Newton) är flykthastigheten från en massa M med radien R är lika med ljushastigheten c när

R = RS = 2GM/c2

(flykthastigheten är v = (2GM/r)1/2, se fråga 3782 ). Gravitationell bindningsenergi för en massa m vid ytan (kallas händelsehorisonten eller Schwarzschild-radien) av ett svart hål blir då

GMm/RS = mc2/2

vilket är exakt halva vilomassan mc2. Om man i stället använder den allmänna relativitetsteorin (vilket vi självklart måste göra) blir uttrycket för händelsehorisonten oförändrad men den gravitationella bindningsenergin blir lika med vilomassan mc2.

Hur skall vi tolka detta? Om vi låter en massa m falla ner i ett svart hål kan vi frigöra maximalt energin mc2/2. Resten kommer att försvinna som rödförskjutning. Ett svart hål är alltså en mycket effektiv energikälla - fusion frigör t.ex. bara någon procent av vilomassan. Detta är orsaken till att man tror att de mest energetiska objekten vi känner till, t.ex. kvasarer, är svarta hål. Om energin frigöres när massan är vid händelsehorisonten blir rödskiftet oändligt, och ingen energi slipper ut. Om vi emellertid låter energin stråla ut när massan är på väg ner, så kan en del av energin slippa ut - maximalt mc2/2.

Länk 1 innehåller information från en expert på området. Länk 2 är en användbar formelsamling för svarta hål. Se även Black_hole och Supermassive_black_hole .
/Peter E

Nyckelord: svart hål [35]; gravitationsvågor [10]; flykthastighet [4]; relativitetsteorin, allmänna [24];

1 http://www2.physics.umd.edu/~tajac/
2 http://fragelada.fysik.org/resurser/blackholes.pdf

*

Kraft-Rörelse [3782]

Fråga:
Hur räknar man ut flykthastigheten hos en kropp?
/Hans B, Anders Ljunstedts Gymnasium, Åmål

Svar:
Flykthastigheten är den minsta hastighet en kanonkula måste ha för att lämna jorden. Vi skjuter den rakt upp och bortser från luftmotståndet. Den kinetiska energin (E) ska vara lika med arbetet (W) som krävs för att lyfta upp kanonkulan ut i rymden.

E = W

E = mv2/2

W = GmM/r

m = kanonkulans massa, v = kanonkulans hastighet, G = gravitationkonstanten, M = jordens massa, r = jordens radie

Uttrycket för W får man fram genom att notera att arbetet är lika med integralen av kraften med avseende på vägen. Vi integrerar alltså kraften från jordytan mot oändligheten. Kraften (f) ges av Newtons gravitationsteori:

f = GmM/r2

Integralen (från r till oändligheten) blir

W = GMm/r

Ur detta får vi fram uttrycket för flykthastigheten (escape velocity) genom att sätta E = W:

v = (2GM/r)1/2

Låt oss beräkna flykthastigheten för jorden och månen. Gravitationskonstanden G är 6.674*10-11 (Gravitational_constant ). Övriga data från Planetary Fact Sheets :

Jordens massa: 5.9736*1024 kg
Jordradien: 6.371*106 m
Månens massa: 0.07349*1024 kg
Månradien: 1.737*106 kg

Flykthastgheten för jorden blir då

v = (2*6.674*10-11*5.9736*1024/6.371*106)1/2 = 11187 m/s = 11.2 km/s

och för månen

v = (2*6.674*10-11*0.07349*1024/1.737*106)1/2 = 2376 m/s = 2.4 km/s

Se vidare Escape_velocity .
/KS/lpe

Nyckelord: flykthastighet [4];

*

Ämnesområde
Sök efter
Grundskolan eller gymnasiet?
Nyckelord: (Enda villkor)
Definition: (Enda villkor)
 
 

Om du inte hittar svaret i databasen eller i

Sök i svenska Wikipedia:

- fråga gärna här.

 

 

Frågelådan innehåller 7168 frågor med svar.
Senaste ändringen i databasen gjordes 2017-07-06 14:08:20.


sök | söktips | Veckans fråga | alla 'Veckans fråga' | ämnen | dokumentation | ställ en fråga
till diskussionsfora

 

Creative Commons License

Denna sida från NRCF är licensierad under Creative Commons:
Erkännande-Ickekommersiell-Inga bearbetningar
.