Välkommen till Resurscentrums frågelåda!

 

Vill du ha ett snabbt svar - sök i databasen: Anpassad Google-sökning
(tips för sökningen).
Använd diskussionsforum om du vill diskutera något.
Senaste frågorna. Veckans fråga.

6 frågor/svar hittade

Kraft-Rörelse [20650]

Fråga:
Hej jag har problem med att lösa denna uppgiften i kursen fysik 1a och hoppas ni kan hjälpa mig .

Uppgift: Lisa sitter i en bil och kör bakom en traktor med släp i 12m/s. Hon beslutar sig för att köra om traktorn och accelererar konstant med 1,5m/s2. Hur lång blir omkörningssträckan om den startas 10 meter bakom traktorn och avslutas 10 meter framför traktorn? Bilen är 5 meter lång och traktorn med släp är 15 meter lång. (3p)
/Jana E, Jensen Education, Helsingborg

Svar:
För att köra om traktorn behöver bilen tillryggalägga en sträcka

10 (marginal bakåt) + 5 (bilens längd) + 10 (lucka framåt) + 15 (längd traktor/släp) = 40 m

längre än traktorn. Vi tillämpar standardformeln för konstant acceleration (se Acceleration#Uniform_acceleration )

s = v0t + at2/2

Tillämpade på bilen och traktorn

sbil = 12t + 1.5*t2/2

och

straktor = 12t + 0

Skillnaden i vägsträcka blir

1.5*t2/2 = 40 m

Tiden för omkörningen blir alltså

t = sqrt(40*2/1.5) = sqrt(160/3) = 7.30 s

Omkörningssträckan blir då

12t + 1.5*t2/2 = 127.6 m

Nyckelord: acceleration [6];

*

Kraft-Rörelse [20174]

Fråga:
Hej sitter med sista uppgiften som jag nästan klarat ut men behöver lite hjälp. En tegelpanna med massan 3 kg börjar glida ned längs ett tak klätt med slät papp. Pannan glider 5 meter innan den når nederkanten av taket. Takets lutning är 25 grader (mot horusontalplanet). Friktionskraften är 0,2.

A: Vilken fart har tegelpannan när den rutschar av taket?

B: Använd svaret från "A" för att beräkna hur lång långt ut från husväggen som tegelpannan träffar marken. Det är 4 m från takkanten till marken.

Nu del A tror jag att jag har klarat fick 4,5m/s genom att likställa rörelseenergi med läges där h=s*sin(v). men det finns inget facit är otroligt tacksam för hjälp och vägledning. Glad påsk!
/edin R

Svar:
Uppgiften kommer från länk 1. Eftersom problemet innehåller friktion kan du inte använda energikonservering utan friktionsförluster (se emellertid nedan). ________________________________________________________________

A Vi börjar med att beräkna den resulterande kraften Fr från skillnaden mellan tyngdkraftens komponent nedåt parallellt med planet och friktionskraften, se figur nedan:

Fr = mg(sinq - m*cosq) = mg(sin(25) - 0.2*cos(25)) = mg*0.2414 N

Accelerationen a ges av

a = F/m = g*0.2414 = 9.81*0.2414 = 2.368 m/s2

Vi räknar ut tiden t på planet från

s = at2/2

t = sqrt(2*s/a) = sqrt(2*5/2.368) = 2.055 s

Sluthastigheten vid takets slut blir då

v = a*t = 2.368*2.055 = 4.866 m/s

Låt oss kolla detta svar genom att tillämpa energins bevarande

Potentiella energin i startläget är

mgh = m*9.81*sinq *5 = m*9.81*sin(25)*5 = 20.73m J

Rörelseenergin på takkanten blir

Ek = m*v2/2 = m*4.8662/2 = 11.84m J

Friktionsförlusterna är

Ef = kraften*vägen = mg*m*cosq*5 = m*9.81*0.2*cos(25)*5 = 8.89m J

Summan av Ef och Ek blir

8.89m + 11.84m = 20.73m J

vilket stämmer bra med potentiella energin ovan. ________________________________________________________________

B Vi delar vi upp hastigheten vid takkanten i en horisontell och en vertikal komponent:

vh0 = v0*cos(25) = 4.866*cos(25) = 4.410 m/s

vv0 = v0*sin(25) = 4.866*sin(25) = 2.056 m/s

För rörelsen i vertikalled (fritt fall) gäller (ekv. 4 i fråga 18438 )

vv2 = vv02 + 2as = 2.0562 + 2*9.81*4 = 82.71 (m/s)2

dvs

vv = 9.095 m/s

Vi räknar ut falltiden t från

s = vv0*t + gt2/2 = 2.056*t + 9.81*t2/2

dvs

9.81t2 + 2*2.056*t - 2*4 = 9.81t2 + 4.112t - 8 = 0

med lösningen

t = 0.7175 s (det finns även en ogiltig negativ lösning)

Rörelsen i horisontalled sker med konstant hastighet. När takpannan når marken efter 0.7175 s har den färdats sträckan

s = vht = 4.410*0.7175 = 3.16 m

Vi kollar resultatet med energiprincipen. Totala energin i förhållande till marken (före start):

mgh = m*9.81*(sin(25)*5+4) = 59.97m J

Totala hastigheten vid marken blir

V = sqrt(vh2 + vv2) = sqrt(4.4102 + 9.0952) = 10.108 m/s

Ekin + Ef = m(10.1082/2 + 8.89) = 59.98m J

vilket stämmer bra med ovanstående värde för den totala potentella energin.



/Peter E

Nyckelord: friktion [48]; lutande plan [14]; fallrörelse [21]; acceleration [6];

1 https://www.hb.se/PageFiles/204024/Naturvetenskap_160114.pdf
2 http://hyperphysics.phy-astr.gsu.edu/hbase/frict2.html#plo

*

Energi [19472]

Fråga:
En boll studsar från ett golv med hastigheten 6m/s. Vid vilken tidpunkt når bollen 1m?
/Lina S, Vasa Övningsskola, Finland

Svar:
Du kan använda ekvation (3) i fråga 18438 :

s = ut + at2/2

s = 6t - 5t2

där vi satt in accelerationen = g = 10. Minustecknet är för att accelerationen är nedåt medan rörelsen från början är uppåt.

Lösningen för s = 1 m blir t = 0.2 s. Den andra roten t = 1 s är när bollen vänt och passerar 1 m ovanför startpunkten, se nedanstående figur.

Maxhöjden är (från figuren) 1.8 m över starthöjden -1 m. Man kan kontrollera räkningarna genom att se om energin stämmer

Potentiell energi i högsta punkten om bollens massa är m kg:

mgh = 18m J

Kinetisk energi i lägsta punkten:

mv2/2 = 18m J

Länk 1 är en hjälp att lösa och plotta andragradsekvationer.



/Peter E

Nyckelord: fallrörelse [21]; *verktyg [8]; acceleration [6];

1 http://www.mathsisfun.com/quadratic-equation-solver.html

*

Kraft-Rörelse [19036]

Fråga:
Du har två studsbollar. Du håller dem vid höjden 1m. Du säpper den ena studsbollen ner mot marken, när den prescis nuddar marken släpper du den andra från samma höjd. Bollarna har perfekt studsförmåga och väger 1 kg. Vilken höjd över marken möts bollarna?
/Karl L, Fäss, Göteborg

Svar:
Karl! Problemet är lite konstgjort och inte särskilt intressant, men det kan tjäna som illustration av fritt-fall formlerna och s-t diagram.

Det grundläggande uttrycket är sträckan s som funktion av tiden t (ekvation 3 från fråga 18438 ):

s = v0t + at2/2

där v0 är begynnelsehastigheten. Accelerationen a är -g (accelerationen är riktad nedåt). Vi använder g=10 m/s2.

Vid tiden t=0 befinner sig den ena bollen (boll 1) i punkten (0,1) med hastigheten 0 och den andra bollen (boll 2) i punkten (0,0) med hastigheten v0 uppåt (positiv riktning), se figuren nedan.

Rörelseekvationerna är

Boll 1: s = 1 - gt2/2   (1)

(observera att vi adderat 1 eftersom bollen startar 1 m ovanför origo)

Boll 2: s = v0t - gt2/2   (2)

Vi beräknar begynnelsehastigheten hos boll 2 från

v0 = gt1

där t1 är falltiden från 1 meters höjd.

1 = gt12/2

t1 = sqrt(2/g) = sqrt(1/5)

v0 = 10*sqrt(1/5) = sqrt(20)

Rörelseekvationen för boll 1 blir

s = 1 - 10*t2/2   (3)

och för boll 2

s = sqrt(20)*t - 10*t2/2   (4)

Tidpunkten t2 när bollarna möts får vi genom att sätta högra leden i (3) och (4) lika:

1 - 5*t22 = sqrt(20)*t2 - 5*t22

1 = sqrt(20)*t2

t2 = 1/sqrt(20) = 0.2236 s

s = 1 - 5*0.22362 = 0.7500 m

Bollarna möts alltså på höjden 0.75 m.

Se fråga 18479 för mer om rörelsediagram.

Diagrammet nedan har ritats med det mycket lättanvända men flexibla plotprogrammet FooPlot, se FooPlot . Fler matematik- och plott-program finns under länk 1 och 2.



/Peter E

Nyckelord: fallrörelse [21]; *verktyg [8]; acceleration [6];

1 http://itools.subhashbose.com/grapher/
2 http://www.shodor.org/interactivate/activities/SimplePlot/

*

Kraft-Rörelse [18438]

Fråga:
Jag undrar varför en vattenstråle blir tunnare en bit nedanför kranen?
/Veckans fråga

Ursprunglig fråga:
Hej! Jag undrar varför en vattenstråle blir tunnare en bit nedanför kranen?

Tacksam för utförligt svar.
/Claudia M, Jensens Gymnasium, Stockholm

Svar:
Intressant fråga, så jag testade det genom ett litet experiment i vad som på engelska kallas "kitchen sink physics".

En möjlig förklaring är att vattnet faller fritt när det lämnar kranen. När hastigheten ökar måste därför strålens diameter minska för att vattnets volym skall bevaras. Vi använder formlerna för fallrörelse med konstant acceleration.

I figuren nedan syns att vattenstrålen definitivt bli tunnare allteftersom den rör sig nedåt.

Låt oss börja med några allmänna uttryck för likformig acceleration (konstant acceleration, t.ex. i tyngdkraftfältet), se Acceleration#Uniform_acceleration . Man brukar använda följande beteckningar för storheterna:

v sluthastighet (vid tiden t, m/s)
u begynnelsehastighet (vid tiden 0, m/s)
s sträcka (m)
a acceleration (m/s2)
t tid (s)

Acceleration definieras som (ändring i hastighet)/(tiden) dvs

a = (v-u)/t

Genom omgruppering får vi

v = u + at (1)

Medelhastigheten ges av

(u+v)/2 = s/t

vilket kan omgrupperas till

s = [(u + v)/2] t (2)

Vi använder (1) för att eliminera v från ekvation (2)

s = ut + at2/2 (3)

Slutligen använder vi (1) för att eliminera t i ekvation (2)

s = [(v+u)/2][(v-u)/a] = (v2 - u2)/2a

vilket ger uttrycket

v2 = u2 + 2as (4)

VI kommer att använda ekvation (4) för att testa "fritt fall"-hypotesen.

Vi behöver först bestämma vattenflödet F. Vi gör detta genom att mäta tiden det tar att fylla ett enliters kärl. Det tog 90 sekunder, så flödet blir:

F = 1 [l]/90 [s] = 1*10-3 [m3]/90 [s] = 1.11*10-5 m3/s

Genom att mäta diametern hos den grå adaptern (33 mm) kunde en kalibrering för mm/pixel på bilden åstadkommas (originalet är 4 gånger större än nedanstående bild). Därefter kunde alla avstånd mätas och omräknas till mm.

I tabellen nedan finns alla uppmätta och uträknade data: avstånd från startpunkten*, strålens radie, hastigheten, fritt fall hastighet och differensen i hastighet.

____________________________________________________

D (mm) r (mm) v (m/s) vB (m/s) Differens (%) 0 3.21 0.34 50 1.77 1.12 1.05 -6% 94 1.47 1.62 1.45 -10% ____________________________________________________

Bevarande av flödet ger följande samband:

A*v = p r2*v = F

dvs

v = F/(p r2)

A är tvärsnittsytan, v är hastigheten och r är strålens radie.

För positionen D = 0 får vi t.ex.

v = 1.11*10-5/(p(3.21*10-3)2) = 0.34 m/s

Med hjälp av ekvation (4) ovan kan vi få ett beräknat värde på hastigheten om hypotesen fritt fall är korrekt:

vB = sqrt(0.342 + 2g*50*10-3) = sqrt(0.116 + 0.981) = 1.05 m/s

och

vB = sqrt(1.122 + 2g*44*10-3) = sqrt(1.25 + 0.86) = 1.45 m/s

Avvikelsen mellan de uppmätta värdena på hastigheterna och de som beräknats för fritt fall är -6% och -10%. Det är nog lite för stora avvikelser för att helt kunna förklaras som tillfälliga mätfel. Det tycks alltså komma in andra effekter, t.ex. ytspänning och laminär strömning, dvs att hastigheten inte är konstant över tvärsnittsytan, se Laminar_flow . Den svenska Wikipedia artikeln Laminär_strömning är ganska intetsägande, men innehåller ett kul skämt (bildtexten till bilden med fiskar).

I länk 1 beskrivs ett liknande experiment. Man använder sig av Bernoullis ekvation, som emellertid ger exakt samma resultat som i ekvation (4). Länk 2 behandlar acceleration och fritt fall (v-t diagram).

____________________________________________________________________

* För att undvika lokala effekter från kranen valdes nollpunkten en bit ner. Nedre punkten valdes lite ovanför 100 mm nivån eftersom bilden av strålen blir ganska otydlig.



/Peter E

Nyckelord: fallrörelse [21]; *vardagsfysik [62]; acceleration [6];

1 http://www.chabotcollege.edu/faculty/shildreth/physics/BernoulliLab.htm
2 http://www.lightandmatter.com/html_books/lm/ch03/ch03.html

*

Kraft-Rörelse [16309]

Fråga:
Om en person som väger 115 kilo hoppar ifrån "tian" (tio meter). Hur mycket väger eller med vilken kraft kommer denne att slå ned i vattnet?
/Alexander F, Ebersteinska gymnasiet, Norrköping

Svar:
Hej Alexander! Låt oss först reda ut några missförstånd. För när du säger väger så menar du antagligen 'hur många g utsätts han för?'.

Han väger 115 kg, se vikt i *fysikaliska definitioner . Vikt är alltså samma som massa och den är densamma.

Vilken kraft han påverkas av går inte att säga. Det beror på hur han landar. Se definitionen av kraft i *fysikaliska definitioner .

Hastigheten räknar man ut från

s = gt2/2

där s är sträckan (10 m), g tyngdaccelerationen (c:a 10 m/s2) och t är falltiden. Vi får

10 = 10*t2/2

dvs

t = sqrt(2) = 1.414 s

Sluthastigheten v ges av

v = gt = 10*sqrt(2) = 14.14 m/s.

För att räkna ut hur mycket hopparen påverkas måste vi göra ett enkelt antagande om uppbromsningen i vattnet. Låt oss säga att det är ett halvt magplask och att uppbromsningen sker med konstant acceleration (OK, negativ acceleration egentligen, alltså deceleration) på sträckan 1 m. Accelerationen under 10 m:s fritt fall är g. Om uppbromsningen sker på 1 m blir accelerationen 10g eftersom medelhastigheten är densamma för det fria fallet och uppbromsningen.

Alternativ enklare uträkning av sluthastigheten

Man kan använda sig av att den potentiella energin s meter upp omvandlas till kinetisk energi vid ytan:

Potentiell energi: m*g*s

Kinetisk energi: mv2/2

Om vi sätter dessa lika får vi

m*g*s = mv2/2

g*s = v2/2

dvs

v = sqrt(2*g*s) = sqrt(2*10*10) = 10*sqrt(2)

vilket är samma värde som ovan.

Observera att vi bortsett från luftmotståndet. Det är rimligt för så små höjder som 10 m, men inte för betydligt högre höjder.
/Peter E

Nyckelord: fallrörelse [21]; acceleration [6];

*

Ämnesområde
Sök efter
Grundskolan eller gymnasiet?
Nyckelord: (Enda villkor)
Definition: (Enda villkor)
 
 

Om du inte hittar svaret i databasen eller i

Sök i svenska Wikipedia:

- fråga gärna här.

 

 

Frågelådan innehåller 7283 frågor med svar.
Senaste ändringen i databasen gjordes 2018-07-06 12:33:26.


sök | söktips | Veckans fråga | alla 'Veckans fråga' | ämnen | dokumentation | ställ en fråga
till diskussionsfora

 

Creative Commons License

Denna sida från NRCF är licensierad under Creative Commons:
Erkännande-Ickekommersiell-Inga bearbetningar
.