Visa fråga/svar

 

Ljud-Ljus-Vågor [19723]

Fråga:
Svänger E och B fälten i takt i elektromagnetisk strålning?
/Veckans fråga

Ursprunglig fråga:
Hej!

Jag läser just nu om elektromagnetiska svängningskretsar och hur radiovågor alstras, men det finns något jag inte riktigt förstår. Om man utgår från förklaringen med svängningskretsen där energi växlar mellan att vara elektrisk mellan kondensationsplattorna och magnetisk i spolen, kommer man fram till att det magnetiska fältet är minimalt när det elektriska fältet är maximalt och vice versa. Men när vi talar om elektromagnetiska vågor är inte fälten förskjutna relativt varandra med pi/2 rad, de är ju i fas!Jag har försökt googla runt och stötte på begreppen induktionsfält och strålningsfält, men ingen riktig ingående förklaring på vad dessa är och hur de gör att fälten hamnar i fas, så jag hade varit tacksam om jag hade fått en här!

Mvh, Rose
/Rose G, Katedralskolan, Växjö

Svar:
Engelska Wikipedia säger följande om elektromagnetisk strålning:

Electromagnetic radiation (EMR) is a form of radiant energy released by certain electromagnetic processes. Visible light is one type of electromagnetic radiation, other familiar forms are invisible electromagnetic radiations such as X-rays and radio waves.

Classically, EMR consists of electromagnetic waves, which are synchronized oscillations of electric and magnetic fields that propagate at the speed of light. The oscillations of the two fields are perpendicular to each other and perpendicular to the direction of energy and wave propagation, forming a transverse wave. Electromagnetic waves can be characterized by either the frequency or wavelength of their oscillations to form the electromagnetic spectrum. (Electromagnetic_radiation )

Maxwells ekvationer ger en vågekvation där amplituden på stort avstånd från källan (se nedanstående figur) avtar som 1/r. Detta är ditt strålningsfält. Fälten ser ut som i figuren i fråga 15035 . Man ser att E och B svänger i takt.

Nära källan är fälten mycket mer komplicerade eftersom vi har både laddningar och magnetism. Dessa (induktionsfältet) avtar emellertid hastigare än 1/r och försvinner på stort avstånd. Det är alltså bara strålningsfältet, som avtar som 1/r, som överlever på stort avstånd.

Det är alltså amplituden på fälten som avtar som 1/r. Energitransporten ges emellertid av Poyntings vektor (Poynting_vector#Plane_waves ):

P = konst*ExB = konst*E2/c,

och avtar, som sig bör, som 1/r2.

Se även Electromagnetic_radiation#Near_and_far_fields , Electromagnetic_radiation#Derivation_from_electromagnetic_theory och fråga 2867 .

Hoppas det blev lite klarare, Rose, men detta är inte helt lätt. Bra föreläsningar om Maxwells ekvationer och elektromagnetisk strålning av professor Shankar (Yale) finns under länk 1 och 2. Mot slutet av föreläsning 2 visar föreläsaren hur den magnetiska kraften uppkommer som en relativistisk effekt på laddningar som rör sig. Det var detta som fick Einstein att utveckla sin speciella relativitetsteori.



/Peter E

Nyckelord: elektromagnetisk strålning [21]; Maxwells ekvationer [3]; relativitetsteorin, speciella [45];

1 https://www.youtube.com/watch?v=yINtzw63Knc
2 https://www.youtube.com/watch?v=JJZkjMRcTD4

*

 

 

Frågelådan innehåller 7624 frågor med svar.
Senaste ändringen i databasen gjordes 2022-05-21 17:33:39.

 

** Frågelådan är stängd för nya frågor tills vidare **


sök | söktips | Veckans fråga | alla 'Veckans fråga' | ämnen | dokumentation | ställ en fråga
till diskussionsfora

 

Creative Commons License

Denna sida från NRCF är licensierad under Creative Commons:
Erkännande-Ickekommersiell-Inga bearbetningar
.