Visa fråga/svar

 

Materiens innersta-Atomer-Kärnor [19345]

Fråga:
Varifrån kommer bindningsenergin som frigörs vid fusion?
/Veckans fråga

Ursprunglig fråga:
Hej! Jag har en fråga om bindningsenergin i atomkärnor. Vid fusion frigörs energi då neukloner får nya kopplingar av typen stark växelverkan. Kanske lite förenklat, men det här är väl i huvudsak rätt?

Vad jag har lite svårt att förstå är var den här energin kommer ifrån. Energi kan ju inte "bildas". När kärnorna slås ihop ökar bindningsenergin, men på något vis frigörs då energi. Hur kan energi "bli över" när det egentligen bildas nya kopplingar?

Jag har läst något om potentiell energi som finns "lagrad" i olika objekt och som sedan frigörs och bildar rörelseenergi då objekten växelverkar. Om jag förstår det rätt är det den här energin som kan frigöras i fusion. Dock så har väl den starka växelverkan begränsad räckvidd? Bär atomkärnorna ändå omkring på potentiell energi för ifall de hade kommit tillräckligt nära för att börja växelverka? Borde inte allting i universum då bära omkring på potentiell energi för ifall det skulle börja växelverka med något annat? Borde inte det finnas otroligt mycket energi lagrat som potentiell energi, energi lagrad för all annan materia i universum? Men så kan det väl inte vara?
/Axel H, Tunaskolan, Lund

Svar:
Hej Axel! Det första är helt korrekt: energi frigörs genom att nukleonerna binds till varandra. Den frigjorda energin kommer från en negativ potentiell energi i sluttillståndet. Låt oss anta vi har en samling fria nukleoner i vila. Energin är E=mc2, där m är massan. Om vi sätter samman nukleonerna till en kärna frigörs bindningsenergin U. Denna bindningsenergi kan användas t.ex. för att producera värme och elektricitet. Totala energin från början var ju E. Energin i sluttillståndet är då (E-U)+U=E (uttrycket i parentesen är kärnans totala energi). Vi ser att totala energin bevaras som den skall. Vi ser också att den sammansatta kärnan har mindre massa, M=(E-U)/c2, än de ingående nukleonerna, m=E/c2. Det är denna skillnad i massa som gör att vi kan få ut energi från vissa kärnreaktioner.

Hur stor bindningsenergin är beror på antalet nukleoner och på egenskaperna hos den starka kärnkraften. Om vi sätter samman t.ex. en järnkärna från neutroner och protoner blir bindningsenergin per nukleon c:a 9 MeV, se figuren i fråga 1433 . En nukleon har en viloenergi på ungefär 1 GeV, så den relativa energivinsten blir 9/1000=0.9%.

Se vidare fråga 18978 , 17569 och 13242 för tillämpningar med gravitationskraften och universum.
/Peter E

Nyckelord: potential/potentiell energi [26]; bindningsenergi [23];

*

 

 

Frågelådan innehåller 7318 frågor med svar.
Senaste ändringen i databasen gjordes 2018-10-11 17:04:02.


sök | söktips | Veckans fråga | alla 'Veckans fråga' | ämnen | dokumentation | ställ en fråga
till diskussionsfora

 

Creative Commons License

Denna sida från NRCF är licensierad under Creative Commons:
Erkännande-Ickekommersiell-Inga bearbetningar
.