Visa fråga/svar

 

Materiens innersta-Atomer-Kärnor [17237]

Fråga:
Varför ramlar inte elektronerna in i kärnan?
/Veckans fråga

Ursprunglig fråga:
Hej! Vi känner alla till den vanliga atommodellen, med en kärna i mitten och elektroner som snurrar runt den. Men den förklarar inte flera saker som, t.ex, varför fäster sig inte elektronerna direkt på kärnan? Så jag undrar om det finns någon bättre modell över atomen som förklarar mitt exempel. Tack!
/Oskar H, Cybergymnasiet, Malmö

Svar:
Oskar! Modellen som beskrivs i fråga 13733 - elektronfördelningen är som ett suddigt moln - är mer realistisk. Elektroner kan pga Heisenbergs obestämdhetsrelation inte stängas in i kärnan. Innan man upptäckte neutronen (1932) trodde man att atomkärnorna innehöll elektroner för att ge rätt kärnladdning. Det visade sig emellertid att obestämdhetsrelationen gjorde att elektroners rörelse inte kan begränsas till kärnan. När man upptäckt neutronen och förstått att en kärna består av Z protoner och N neutroner (där A=Z+N är masstalet) så var problemet löst: det krävdes inga elektroner i kärnan så de fick hålla sig på mycket större avstånd.

Oskar kom tillbaka med följande fråga:

Jag har försökt bli klok på varför man inte kan bestämma elektroners exakta position och varför de inte kan befinna sig i atomkärnan enligt Heisenbergs obestämdhetsrelation, men jag begriper mig inte på den. Kan ni förtydliga vad det egentligen obestämdhetsprincipen säger?

Oscar! Det var det konventionella svaret du fick, och jag håller med att jag kunde varit lite tydligare. Så låt oss först räkna lite.

Obestämdhetsrelationen ges av (Heisenberg_uncertainty_principle ):

Dx*Dpx = h/4p (1)

Om vi stänger in en elektron i en atomkärna så är Dx ungefär 10-15 m. Vi får då

Dp = 0.5*10-34/10-15 J*s/m = 0.5*10-19 N*s

För att få en bättre uppfattning om vad detta betyder gör vi om rörelsemängd p till energi E. Det relativistiska sambandet är (vi måste använda relativistiska samband eftersom hastigheten är hög)

E2 = (pc)2 + (mc2)2 (2)

Eftersom energin kommer att visa sig vara mycket hög så kan vi försumma elektronens viloenergi mc2 och får det enkla sambandet

E = pc (3)

(Detta är för övrigt även sambandet mellan energi och rörelsemängd för en foton.) Vi får

E = 0.5*10-19*3*108 N*s*m/s = 1.5*10-11 J = 1.5*10-11/(1.602*10-13) MeV = 100 MeV.

För det första kan vi konstatera att det var OK att försumma vilomassan för elektronen (0.511 MeV). För det andra ser vi att detta är en mycket hög energi och vi känner ingen kraft som är stark nog att hålla elektronen fångad. Coulombkraften räcker inte till på långa vägar - den ger det lägsta tillståndet (1s) i en atom på medelavståndet 10-10 m, vilket är fem storleksordningar större än atomkärnans utsträckning.

Små system som atomer och kärnor följer alltså inte de lagar vi är vana vid i vardagen. Två olika laddade klot attraherar varandra och kommer att fastna vid varandra. Elektroner följer emellertid kvantmekanikens lagar och måste bland annat lyda Heisenbergs obestämdhetsrelation.

Det är emellertid inte helt lätt att tolka vad kvantmekaniken säger oss om naturen. Se t.ex. Kvantmekanik#Exempel_p.C3.A5_tolkningar .

De flesta fysiker föredrar Köpenhamnstolkningen. Den sista, lite skämtsamma, "håll käft och räkna!" är inte heller så dum. Även om kvantmekaniken är svårförståelig så stämmer resultatet mycket bra med observationerna, och det är det viktigaste för en fysikalisk teori.

Länkarna 1 och 2 är svar på liknande frågor.

Man kan även resonera på ett annat sätt: om man stänger in elektronen i en låda om 2*10-15 m så måste våglängden vara högst 4*10-15 m (vågen måste ha en nod där potentialen blir oändlig). Vi får rörelsemängden

p = h/l = 6.6 10-34/4 10-15 = 2 10-19 N*s

vilket är av samma storleksordning som ovan.
/Peter E

Nyckelord: Heisenbergs obestämdhetsrelation [11]; kvantmekanik [27]; relativitetsteorin, speciella [40];

1 http://www.newton.dep.anl.gov/askasci/chem99/chem99283.htm
2 http://www.fnal.gov/pub/inquiring/questions/bob.html

*

 

 

Frågelådan innehåller 7277 frågor med svar.
Senaste ändringen i databasen gjordes 2018-05-19 11:03:01.


sök | söktips | Veckans fråga | alla 'Veckans fråga' | ämnen | dokumentation | ställ en fråga
till diskussionsfora

 

Creative Commons License

Denna sida från NRCF är licensierad under Creative Commons:
Erkännande-Ickekommersiell-Inga bearbetningar
.