Visa fråga/svar

 

Energi [13327]

Fråga:
Varför räknas ett arbete endast om det sker i kraftens riktning?
/Veckans fråga

Ursprunglig fråga:
Hej! Varför räknas ett arbete endast om det sker i kraftens riktning? Står du stilla och håller en väska tex, så krävs ju också en kraft! Inga läroböcker förklarar detta! Tacksam för svar.
/Linda M, Stenungskolan, Stenungsund

Svar:
Mycket bra fråga Linda! Det förvånar mig att vi inte tycks ha besvarat den tidigare.

Ja, det kan tyckas konstigt! Låt oss först föreställa oss en väska som står på marken. Utför den något arbete? Du håller nog med om att den inte gör det.

Det är samma sak om du håller den i handen. Varför blir du då trött? Det är en fysiologisk effekt. För att hålla väskan stilla måste du spänna musklerna i armen. Detta kräver energi som kommer från t.ex. socker som transporteras med blodet. Om du nu inte utför ett arbete på väskan, var tar denna energi vägen? Vi måste ju hålla fast vid energiprincipen (energi kan varken skapas eller förstöras)! Jo den övergår i värme. Tänk på att när du arbetar hårt (t.ex. springer) så blir du varm.

Om du ställer ner väskan på golvet? Då utför du på samma sätt som ovan inget arbete eftersom kraften du påverkar väskan med är motsatt rörelseriktningen. Eftersom kraft och rörelse är i motsatta riktningar (din motkraft uppåt, rörelseriktningen neråt), så blir det av dig utförda arbetet negativt. Detta skall man tolka så att tyngdkraften utför ett arbete på dig. Om du vore annorlunda konstruerad (t.ex. med en motvikt som transporteras uppåt med hjälp av tyngdkraftsarbetet) skulle du kunna tillgodogöra dig och lagra detta arbete.

Om du släpper väskan då? Då ökar ju rörelseenergin. Ja, men då är det tyngdkraften som utför arbetet.

Nedanstående bild från länk 1 ger exempel på krafter som inte utför arbete.

Är inte fysiken underbar - man kan "förklara" allt !

Arbete och rörelseenergi

Arbete definieras som dW = F·ds, där F är kraften som verkar på kroppen under sträckan ds i samma riktning som ds. (se även Fysikaliskt_arbete ).

Om en kropp med massan m påverkas av en kraft F kommer kroppen att accelereras (acceleration a) och det utförda arbetet att förvandlas till rörelseenergi (vi bortser från friktion):

F ds = m a ds = m dv/dt ds = m dv ds/dt = m v dv

Integration från 0 till v ger rörelseenergin (kinetiska energin) K

K = int(m v dv) = mv2/2

Rörelseenergin är alltså det mekaniska arbete som krävs för att reducera en kropps hastighet från v till noll eller omvänt öka hastigheten från 0 till v.

Om F och ds är motriktade (du puttar på en bil som rör sig mot dig) så är produkten F*ds negativ, och du utför ett negativt arbete på bilen. Bilen får då minskad rörelseenergi, dvs den bromsas upp.

Krafter som inte utför arbete

Ovanstående gäller förstås bara om det finns en komponent av kraften i rörelsens riktning. Det finns flera exempel på att en kraft verkar på en kropp utan att utföra arbete. Det mest uppenbara är kraften som påverkar en laddad partikel i ett homogent magnetfält, Lorentzkraften. Om laddningen är q, magnetfältet B och hastigheten v så blir kraften (se Lorentzkraft )

F = q (v x B)

där F, v och B är vektorer. Kraften, och därmed avböjningen är alltså vinkelrätt mot magnetfältet och mot rörelseriktningen. Det utförs alltså inget arbete på laddningen, och den kan fortsätta i en cirkel med konstant radie hur länge som helst. Detta drar man nytta av i en synkrotron där man kan lagra elektroner som kan cirkulera i princip hur länge som helst. Visserligen får man accelerera dem lite grann, men det beror på att elektronerna sänder ut ljus, s.k. synkrotronstrålning (Synkrotronstrålning ), när de avböjs.

Ett annat exempel är en satellit som kretsar kring en planet i en exakt cirkulär bana med konstant hastighet. Eftersom gravitationskraften är riktad mot planeten och rörelseriktningen vinkelrätt däremot utför kraften inget arbete. Vi kan se att om gravitationskraften utfört ett arbete så måste satellitens bana ändras på något sätt om vi skall bevara den totala energin.

Lägesenergi

För att generalisera till elliptiska banor behöver vi definiera ännu ett begrepp. Lägesenergi är energi som finns hos ett föremål som påverkas av ett kraftfält, så som gravitation eller elektriska fält. Lägesenergi anges jämfört med en referenspunkt – exempelvis kan lägesenergi från gravitation anges jämfört med markhöjd eller havsnivån. Den mest strikta referenspunkten är en punkt på oändligt avstånd, där alla kraftfält är 0. Sett ur det perspektivet är den potentiella energin negativ för alla föremål i universum.

Om satelliten däremot går i en elliptisk bana finns det en komponent av gravitationskraften i rörelseriktningen: när satelliten rör sig närmare planeten utför gravitationskraften ett arbete på satelliten, vilket medför att satellitens hastighet ökar. När satelliten rör sig bort från planeten utför gravitationskraften ett negativt arbete (kraften och rörelsen är ju motriktade). Detta arbete tas från satellitens rörelseenergi som alltså minskar. Den totala energin E dvs summan av kinetisk energi (K) och lägesenergi (U(r)) är konstant:

E = K + U(r)

När satelliten kommer närmare planeten kommer alltså K att öka. U(r) blir då mer negativt för att E skall vara konstant. Vi förutsätter då den normala definitionen att lägesenergin U(∞) på oändligt avstånd är 0.

Anmärkning: Potentiell energi används ofta som synonymt till lägesenergi. Potentiell energi är emellertid ett lite vidare begrepp eftersom det även innefattar elastisk energi.

Se vidare Mekaniskt_arbete , Rörelseenergi , Potentiell_energi och länk 2.



/Peter E

Nyckelord: arbete [24]; rörelseenergi [14]; potential/potentiell energi [30]; *fysiologi [13]; satellitbana [15];

1 http://hyperphysics.phy-astr.gsu.edu/hbase/work2.html
2 https://www.youtube.com/watch?v=sY4Y4AjfhGU

*

 

 

Frågelådan innehåller 7624 frågor med svar.
Senaste ändringen i databasen gjordes 2022-05-21 17:33:39.

 

** Frågelådan är stängd för nya frågor tills vidare **


sök | söktips | Veckans fråga | alla 'Veckans fråga' | ämnen | dokumentation | ställ en fråga
till diskussionsfora

 

Creative Commons License

Denna sida från NRCF är licensierad under Creative Commons:
Erkännande-Ickekommersiell-Inga bearbetningar
.