Visa fråga/svar

 

Universum-Solen-Planeterna [13242]

Fråga:
Hur fungerar Big Bang?
/Veckans fråga

Ursprunglig fråga:
Enligt teorin skapades universum i en sk "big bang". Det måste ju rimligtvis betyda: Ur ingenting skapades allting! Finns det någon teori som ger en god förklaring om hur detta fungerar!?
/Sven E, Furuhedsskolan, Kalix

Svar:
Big Bang (eller Stora smällen), är standardteorin om universums uppkomst. Enligt denna teori skapades universum och rumtiden för ca 13,7 miljarder år sedan, då universum började expandera från att ha varit koncentrerat i en punkt. Termen myntades av astronomen Fred Hoyle (som var motståndare till den) under en radiointervju i BBC den 28 mars 1949. Termen i sig är dock missvisande då det inte handlar om en explosion av materia i en tom rymd utan istället om en expansion av rummet självt som materian befinner sig i. (Från Wikipedia Big_Bang ).

Man är ganska överens om beskrivningen hur Big Bang gick till. Vad som fanns före Big Bang och vad som finns utanför vårt universum vet man inget om även om det finns spekulationer. Speciellt vet vi inget om hur universum skapades (dvs vad som orsakade Big Bang). Vi kan med våra observationer bara "famla lite i kanterna", ungefär som en blind utforskar ett djupt hål genom att känna längs kanten.

Fysiken för det tidiga universum är i gränslandet mellan kosmologi (vetenskapen som behandlar universums uppkomst och utveckling) och filosofi eftersom vi ännu inte har en fullständig teori för hur alla de fyra grundläggande krafterna förenas. Det finns därför inget som länkar vad som hände i det tidiga universum (före Planck-tiden 10-43 s) med vad vi kan observera i dag. Detta gör sådana spekulationer till mer filosofi än vetenskap.

Supersträng-teorin hävdar att universum hade 10 dimensioner under Planck-eran. Dessa övergår 4 dimensioner efter Planck-eran, och de 6 dimensionerna är fortfarande förkrympta och märks alltså inte. Under Planck-eran kan man beskriva universum som ett kvant-skum med 10 dimensioner och som innehåller Planck-längd stora svarta hål som skapades och försvann utan orsak och verkan. Med andra ord: försök att inte tänka på denna eran!

C:a 10-35 sekunder efter Big Bang var det en mycket snabb expansion av universum. Detta fenomen kallas inflation. Observera att denna inflation skedde med överljushastighet. Detta är inget brott mot den speciella relativitetsteorin eftersom den var en expansion av universum självt och inte materian. Vårt synliga universum är då en bubbla - i nedanstående bild den gula bubblan markerad "us". De andra bubblorna är då i någon mening inte reella eftersom de är utanför vår horisont och vi kommer aldrig att kunna kommunicera med dem. Observera alltså att HELA rymden expanderar- även avståndet mellan bubblorna. Detta betyder att två bubblor som inte är i kontakt med varandra vid en viss tidpunkt aldrig kommer att bli det!

Inflationen orsakades av att symmetrin mellan den starka kärnkraften (färgkraften) och den elektrosvaga växelverkan bröts. Detta orsakade en "fasövergång" som gav energi till att driva den snabba expansionen.

Vissa teorier säger att hela vårt universum är ett svart hål med energin noll, se Zero-energy_universe . Eftersom vi aldrig kan kontrollera detta är det en teori som är lika mycket värd som andra. Fenomen som inte kan mätas brukar inte klassificeras som vetenskap. Men det kan ändå vara roligt att filosofera om det ! I artikeln nedan (länk 1) finns en ljudfil som visar hur Big Bang lät. Länk 2 ger mer ganska elementär information på svenska om big bang. Se även övriga frågor big bang och Wikipedia-artikeln Big_bang . Den kände populärvetenskaplige författaren John Gribbin har intressanta funderingar om universum i John Gribbin's home page (Introduction to Cosmology). James Schombert v6.2 är en guldgruva med föreläsningar bland annat om kosmologi. TalkOrigins Evidence for the Big Bang är en omfattande och ganska avancerad FAQ.

Tidslinje för Big Bang


Tid           Temperatur  Händelse
0                         Big Bang
10-43 s                    Planck-tiden, kända naturlagar gäller
10-35 s                    Inflation
300 s                     Bildande av 4He
380000 år      3000 K     Kosmisk bakgrundsstrålning 
13.7*109 år      3 K       Nu

Låt mig avslutningsvis försöka besvara några vanliga frågor om Big Bang.

Vem hittade på big bang?
Aleksandr Fridman och Georges Lemaître föreslog redan på 20-talet att universum uppkommit genom att en "uratom" expoderade. Den ukrainske fysikern George Gamow (George_Gamow George Gamow (George_Gamow förutsade 1948 även att det överallt i universum skulle finnas mikrovågsstrålning med temperaturen c:a 5 K. Uttrycket big bang var från början en nedlåtande beteckning som en motståndare Fred Hoyle (som föreslagit den s.k. steady state teorin, Steady_State_theory ) hittade på.

Vad hände före Big Bang?
Frågan är, som antytts ovan, meningslös eller utan innehåll. Det är som att fråga: vad finns norr om nordpolen? Före Big Bang fanns ingen tid, och man kan därför inte tala om vad som hände.

Vilka bevis finns det för Big Bang teorin?
De viktigaste är

Anses Big Bang-teorin numera vara så etablerad att man inte kan ifrågasätta den?
I stora drag, ja. Alternativet, Fred Hoyles Steady State teori, får nog anses överspelad. Dels var den lösningen på problemet att universum tycktes vara yngre än vissa gamla stjärnhopar. Detta är löst i dag genom att avståndsskalan har ändrats mycket. Dels förklarar Steady State teorin inte den kosmiska bakgrundsstrålningen och heliumförekomsten i gamla stjärnor, något som Big Bang teorin gör elegant. Detaljerna i Big Bang teorin kan säkert komma att revideras med nya observationer. Vi skall också komma ihåg att en fysikalisk teori beskriver vad vi kan observera, och säger inget om t.ex. varför universum började expandera eller vad som händer utanför vår händelsehorisont (så långt vi teoretiskt kan se, dvs i princip ljushastigheten*universums ålder).

Om all materia, ljus som mörk, varit samlad i en punkt, singularitet1 eller uratom, måste väl gravitationen ha varit oändligt stor, åtminstone ögonblicket efter att expansionen startat och fysikens lagar börjat gälla. Då är det svårt att förstå hur expansionen alls kunde ske, hur den kunde övervinna den ofattbara gravitationen, när inte ens gravitationen i ett s.k. svart hål tillåter något att slippa ut.
Ja, det är svårt att förstå. Fysiken kan ibland med trick hantera sådana här singulariteter (oändligheter), men innan 10-43 sekunder efter Big Bang kan vi i dag inte ge en bra beskrivning. Ett trick som används t.ex. för svarta hål är kosmisk censur. Detta betyder att singulariteten existerar endast matematiskt och inte som en fysisk verklighet som vi kan observera eller mäta. Svarta hål omger sig nämligen av en händelsehorisont som gömmer ("censurerar") singulariteten. Se vidare fråga 14367.

Vidare är det förbryllande att man kan se universum strax efter big bang när man tittar riktigt långt bort. Att man ser bakåt i tiden förstår jag gott, men det ljus som skickades iväg under den första tiden borde väl sedan länge ha passerat oss och fly bort ifrån oss med ljusets hastighet. Ser vi det ljuset "på ryggen" och i rakt motsatt riktning mot det ställe i universum där det hela började? Hur ser det i så fall ut när vi riktar våra teleskop ditåt, mot expansionens centrum?
Vår del av universum (det synliga universum) är enligt standardmodellen bara en liten den av vad som skapades vid inflationen. Varje liten bubbla i figuren nedan är ett universum, men de är alla ekvivalenta och inget innehåller expansionens centrum. Detta är svårt att förstå om man går ända tillbaka till tiden noll, men det kan vi alltså inte göra. Vad vi ser om vi går så långt bort som möjligt (13.7 miljarder år) är eldklotet som hade en temperatur på 3000 K, men som nu pga expansionen har en temperatur på 3 K.

Man kan fråga sig varför universum är så homogent (den kosmologiska principen, universum har samma egenskaper i alla riktningar). Om man tittar åt ett håll 14 miljarder ljusår bort och i motsatt riktning på samma avstånd, så har båda områdena nästan exakt samma temperatur. Eftersom de inte kan ha stått i kontakt med varandra (avståndet är 28 miljader ljusår så ljuset kan inte ha hunnit gå hela vägen mellan dem) kan man tycka detta är konstigt. Anledningen är inflationen. Detta var ett av skälen till att man införde inflationen. Före denna snabba exansionen var de två områdena så nära varandra att de kunde vara i termisk jämvikt.

En konstighet med universums expansion är det faktum att galaxer kan kollidera trots att rymden mellan dem hela tiden utvidgar sig. Återigen, om de dras till varandra av gravitationen så borde väl gravitationen ha förhindrat att de först avlägsnade sig från varandra.
Mja, man får inte se det så. Det är rymden mellan galaxerna som expanderar. Galaxhopar (grupper av galaxer) är bundna med tyngdkraften och galaxernas rörelse inbördes i hopen bestäms av gravitationen och inte expansionen. Vår granngalax Andromedagalaxen, som befinner sig på c:a 2.5 miljoner ljusårs avstånd, rör sig faktiskt mot vår vintergata i stället för att avlägsna sig som de flesta andra galaxer gör.

Sammanfattning av de viktigaste bevisen för Big Bang

1 Rödförskjutning: Galaxernas spektra är rödförskjutna med ett belopp som är proportionellt mot avståndet: Hubbles lag v=d*H, där v är hastigheten, d är avståndet och H är hubblekonstanten.

2 He förekomst: Förekomsten av He i de äldsta stjärnorna är 25% vilket är precis vad Big Bang modellen förutsäger, se fråga 13117 .

3 Kosmiska bakgrundsstrålningen: Mikrovågsstrålningen med en temperatur av 3K härrör från c:a 400000 år efter Big Bang då universum blev transparent genom att H/He kärnorna rekombinerade med elektroner.

Se vidare Big_Bang och på engelska Big_Bang_Theory

___________________________________________________________
1 Singularitet. I matematiken definieras singularitet som en odefinierad punkt hos kurva, yta eller funktion. I kosmologi definieras singularitet som en punkt i rumtiden i vilken rumtidskrökningen är oändlig (svart hål).



/Peter E

Se även fråga 13117 och fråga 14367

Nyckelord: big bang [32]; inflation [5]; kosmologi [20];

1 http://www.newscientist.com/article.ns?id=dn4320
2 http://kasper.pixe.lth.se/NuclearPhysics/slideShow/nobel2006/nobel2006_files/frame.htm

*

 

 

Frågelådan innehåller 7179 frågor med svar.
Senaste ändringen i databasen gjordes 2017-09-20 12:13:24.


sök | söktips | Veckans fråga | alla 'Veckans fråga' | ämnen | dokumentation | ställ en fråga
till diskussionsfora

 

Creative Commons License

Denna sida från NRCF är licensierad under Creative Commons:
Erkännande-Ickekommersiell-Inga bearbetningar
.