Svar:
Genom att bestämma massan, avståndet och ljusstyrkan för ett stort antal stjärnor kan man se att det finns en samband mellan massa och ljusstyrka för stjärnor som befinner på huvudserien, se figuren nedan från länk 1. Eftersom sambandet i log-log plotten kan approximeras med en rät linje kan vi bestämma följande approximativa samband (mass-luminositetsrelationen):
L/L(sun) = [M/M(sun)]
3.5
Den relativa livslängden blir (om vi antar att luminositeten är konstant under hela sjärnans livcykel, vilket inte är ett alltför dåligt antagande eftersom mesta tiden tillbringas på huvudserien) proportionell mot massan dividerat med luminositeten:
[M/M(sun)]/[M/M(sun)]
3.5 = 1/[M/M(Sun)]
2.5
M/M(sun) L/L(sun) Relativ livslängd Livslängd
0.1 0.000316 316 3160 GA
1 1 1 10 GA
10 3160 0.00316 32 MA
100 10000000 0.0000100 0.1 MA
GA (giga annum) är miljarder år, MA är miljoner år
Den uppskattade livslängden stämmer väl sådär med de siffror du ger, men det är uppenbart att massiva stjärnor lever mycket kortare än solen och lättare stjärnor mycket längre. Det finns sofistikerade program som beräknar stjärnors utveckling, och jag antar att de approximativa siffror som ges i din lärobok kommer från sådana beräkningar.
Den springande punkten när det gäller livslängden är luminositeten - en tio gånger tyngre stjärna har inte tio gånger högre utan snarare 3000 gånger högre luminositet. Anledningen till detta är att den större gravitationskraften hos den större stjärnan ger högre temperatur och högre densitet i ett större område i centrum. Detta betyder att vätefusionen går snabbare och effektutvecklingen mycket större.

/Peter E 2007-05-31